Embeddings of Orlicz-Lorentz spaces into $ L_1$
Algebra i analiz, Tome 32 (2020) no. 1, pp. 78-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the Orlicz-Lorentz spaces $ \ell ^n_{M,a}$, $ n\in \mathbb{N}$, with Orlicz function $ M$ and weight sequence $ a$ are uniformly isomorphic to subspaces of $ L_1$ if the norm $ \Vert \cdot \Vert _{M,a}$ satisfies certain Hardy-type inequalities. This includes the embedding of some Lorentz spaces $ \mathrm {d}^n(a,p)$. The approach is based on combinatorial averaging techniques, and a new result of independent interest is proved, which relates suitable averages with Orlicz-Lorentz norms.
Keywords: Orlicz spaces, Lorentz spaces, Orlicz–Lorentz space, subspace of $L_1$, combinatorial inequality.
@article{AA_2020_32_1_a4,
     author = {J. Prochno},
     title = {Embeddings of {Orlicz-Lorentz} spaces into $ L_1$},
     journal = {Algebra i analiz},
     pages = {78--93},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a4/}
}
TY  - JOUR
AU  - J. Prochno
TI  - Embeddings of Orlicz-Lorentz spaces into $ L_1$
JO  - Algebra i analiz
PY  - 2020
SP  - 78
EP  - 93
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a4/
LA  - en
ID  - AA_2020_32_1_a4
ER  - 
%0 Journal Article
%A J. Prochno
%T Embeddings of Orlicz-Lorentz spaces into $ L_1$
%J Algebra i analiz
%D 2020
%P 78-93
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a4/
%G en
%F AA_2020_32_1_a4
J. Prochno. Embeddings of Orlicz-Lorentz spaces into $ L_1$. Algebra i analiz, Tome 32 (2020) no. 1, pp. 78-93. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a4/

[1] Alonso-Gutiérrez D., Bastero J., “The variance conjecture on hyperplane projections of the $\ell_p^n$ balls”, Rev. Mat. Iberoam., 34:2 (2018), 879–904 | DOI | MR | Zbl

[2] Alonso-Gutiérrez D., Passenbrunner M., Prochno J., “Probabilistic estimates for tensor products of random vectors”, Proc. Amer. Math. Soc., 144:5 (2016), 2133–2148 | DOI | MR | Zbl

[3] Alonso-Gutiérrez D., Prochno J., “On the geometry of random convex sets between polytopes and zonotopes”, J. Math. Anal. Appl., 450:1 (2017), 670–690 | DOI | MR | Zbl

[4] Bennett C., Sharpley R. C., Interpolation of operators, Pure Appl. Math., 129, Acad. Press, Boston, MA, 1988 | MR | Zbl

[5] Bloom S., Kerman R., “Weighted $L_\Phi$ integral inequalities for operators of Hardy type”, Studia Math., 110:1 (1994), 35–52 | DOI | MR | Zbl

[6] Bretagnolle J., Dacunha-Castelle D., “Application de l'étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans des espaces ${L}^p$”, Ann. Sci. Ećole Norm. Sup. (4), 2:4 (1969), 437–480 | DOI | MR | Zbl

[7] Gordon Y., Litvak A., Schütt C., Werner E., “Geometry of spaces between polytopes and related zonotopes”, Bull. Sci. Math., 126:9 (2002), 733–762 | DOI | MR | Zbl

[8] Grothendieck A., “Résumé de la théorie métrique des produits tensoriels topologiques”, Bol. Soc. Mat. Sao Paulo, 8 (1953), 1–79 | MR

[9] Johnson W. B., Maurey B., Schechtman G., Tzafriri L., “Symmetric structures in Banach spaces”, Mem. Amer. Math. Soc., 19, no. 217, 1979, 1–298 | MR

[10] Junge M., “The optimal order for the $p$-th moment of sums of independent random variables with respect to symmetric norms and related combinatorial estimates”, Positivity, 10:2 (2006), 201–230 | DOI | MR | Zbl

[11] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatlit, M., 1958 | MR

[12] Kwapień S., Schütt C., “Some combinatorial and probabilistic inequalities and their application to Banach space theory”, Studia Math., 82:1 (1985), 91–106 | DOI | MR

[13] Kwapień S., Schütt C., “Some combinatorial and probabilistic inequalities and their application to Banach space theory. II”, Studia Math., 95:2 (1989), 141–154 | DOI | MR | Zbl

[14] Lechner R., Passenbrunner M., Prochno J., “Uniform estimates for averages of order statistics of matrices”, Electron. Commun. Probab., 20:27 (2015), 1–12 | MR

[15] Lechner R., Passenbrunner M., Prochno J., “Estimating averages of order statistics of bivariate functions”, J. Theoret. Probab., 30:4 (2017), 1445–1470 | DOI | MR | Zbl

[16] Lindenstrauss J., Pelczyński A., “Absolutely summing operators in ${L}_p$-spaces and their applications”, Studia Math., 29:3 (1968), 275–326 | DOI | MR | Zbl

[17] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb. (3), 92, Springer-Verlag, Berlin–New York, 1977 | MR | Zbl

[18] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Ergeb. Math. Grenzgeb. (3), 97, Springer-Verlag, Berlin–New York, 1979 | MR | Zbl

[19] Lorentz G. G., “Some new functional spaces”, Ann. of Math. (2), 51:1 (1950), 37–55 | DOI | MR | Zbl

[20] Montgomery-Smith S., Semenov E., “Random rearrangements and operators”, Voronezh Winter Math. Schools, Amer. Math. Soc. Transl. Ser. 2, 184, 1998, 157–183 | MR | Zbl

[21] Montgomery-Smith S., “Comparison of Orlicz–Lorentz spaces”, Studia Math., 103:2 (1992), 161–189 | DOI | MR | Zbl

[22] Orlicz W., “Über eine gewisse Klasse von Räumen vom Typ B”, Bull. Intern. Acad. Pol., 8 (1932), 207–220 | Zbl

[23] Pietsch A., Eigenvalues and $s$-numbers, Cambridge Stud. Adv. Math., 13, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[24] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Tracts Math., 94, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[25] Prochno J., “A combinatorial approach to Musielak–Orlicz spaces”, Banach J. Math. Anal., 7(213):1, 132–141 | DOI | MR | Zbl

[26] Prochno J., “Musielak–Orlicz spaces that are isomorphic to subspaces of $L_1$”, Ann. Funct. Anal., 6:1 (2015), 84–94 | DOI | MR | Zbl

[27] Prochno J., Schütt C., “Combinatorial inequalities and subspaces of $L_1$”, Studia Math., 211:1 (2012), 21–39 | DOI | MR | Zbl

[28] Rao M. M., Ren Z. D., Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991 | MR | Zbl

[29] Schechtman G., “Matrix subspaces of $L_1$”, Studia Math., 215:3 (2013), 281–285 | DOI | MR | Zbl

[30] Schütt C., “On the positive projection constant”, Studia Math., 78:2 (1984), 185–198 | DOI | MR | Zbl

[31] Schütt C., “Lorentz spaces that are isomorphic to subspaces of $L^1$”, Trans. Amer. Math. Soc., 314:2 (1989), 583–595 | DOI | MR | Zbl

[32] Schütt C., “On the embedding of $2$-concave Orlicz spaces into $L^1$”, Studia Math., 113:1 (1995), 73–80 | DOI | MR | Zbl

[33] Tomczak-Jaegermann N., Banach–Mazur distances and finite-dimensional operator ideals, Pitman Monogr. Surveys Pure Appl. Math., 38, Longman Sci. Techn., Harlow–New York, 1989 | MR | Zbl