Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph
Algebra i analiz, Tome 32 (2020) no. 1, pp. 12-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The periodic Schrödinger operator $ H$ on a discrete periodic graph is treated. The discrete spectrum is estimated for the perturbed operator $ H_{\pm }(t)=H\pm tV$, $ t>0$, where $ V\ge 0$ is a decaying potential. In the case when the potential has a power asymptotics at infinity, an asymptotics is obtained for the discrete spectrum of the operator $ H_{\pm }(t)$ for a large coupling constant.
Keywords: discrete Schrödinger operator, integral operators, estimates of singular numbers, classes of compact operators.
@article{AA_2020_32_1_a1,
     author = {E. L. Korotyaev and V. A. Sloushch},
     title = {Asymptotics and estimates for the discrete spectrum of the {Schr\"odinger} operator on a discrete periodic graph},
     journal = {Algebra i analiz},
     pages = {12--39},
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2020_32_1_a1/}
}
TY  - JOUR
AU  - E. L. Korotyaev
AU  - V. A. Sloushch
TI  - Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph
JO  - Algebra i analiz
PY  - 2020
SP  - 12
EP  - 39
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2020_32_1_a1/
LA  - ru
ID  - AA_2020_32_1_a1
ER  - 
%0 Journal Article
%A E. L. Korotyaev
%A V. A. Sloushch
%T Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph
%J Algebra i analiz
%D 2020
%P 12-39
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2020_32_1_a1/
%G ru
%F AA_2020_32_1_a1
E. L. Korotyaev; V. A. Sloushch. Asymptotics and estimates for the discrete spectrum of the Schrödinger operator on a discrete periodic graph. Algebra i analiz, Tome 32 (2020) no. 1, pp. 12-39. http://geodesic.mathdoc.fr/item/AA_2020_32_1_a1/

[1] Alama S., Deift P. A., Hempel R., “Eigenvalue branches of the Schrödinger operator $H-\lambda W$ in a gap of $\sigma (H)$”, Commun. Math. Phys., 121 (1989), 291–321 | DOI | MR | Zbl

[2] Ando K., Isozaki H., Morioka H., “Spectral properties of Schrödinger operators on perturbed lattices”, Ann. Henri Poincaré, 17:8 (2016), 2103–2171 | DOI | MR | Zbl

[3] Boutet de Monvel A., Sahbani J., “On the spectral properties of discrete Schrödinger operators: (the multidimensional case)”, Rev. Math. Phys., 11:9 (1999), 1061–1078 | DOI | MR | Zbl

[4] Bach V., de Siqueira Pedra W., Lakaev S. N., “Bounds on the discrete spectrum of lattice Schrödinger operators”, J. Math. Phys., 59:2 (2018), 022109 | DOI | MR | Zbl

[5] Birman M. Sh., “Diskretnyi spektr periodicheskogo operatora Shredingera vozmuschennogo ubyvayuschim potentsialom”, Algebra i analiz, 8:1 (1996), 3–20 | MR

[6] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl

[7] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno odnorodnymi simvolami”, Vestn. Leningr. un-ta. Cer. mat., mekh., astronom., 1977, no. 3, 13–21 | Zbl

[8] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno odnorodnymi simvolami”, Vestn. Leningr. un-ta. Cer. mat., mekh., astronom., 1979, no. 3, 5–10 | Zbl

[9] Birman M. Sh., Solomyak M. Z., “Kompaktnye operatory so stepennoi asimptotikoi singulyarnykh chisel”, Zap. nauch. semin. LOMI, 126, 1983, 21–30 | Zbl

[10] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posob., 2-e izd., ispr. i dop., Lan, SPb., 2010

[11] Birman M. Sh., “Discrete spectrum in the gaps of a continuous one for perturbation with large coupling constant”, Estimates and Asimptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–90), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 57–73 | MR

[12] Birman M. Sh., “Discrete spectrum of the periodic Schrödinger operator for non-negative perturbations”, Mathematical Results in Quantum Mechanics (Blossin, 1993), Oper. Theory Adv. Appl., 70, Birkhauser, Basel, 1994, 3–7 | DOI | MR | Zbl

[13] Birman M. Sh., “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization, Math. Top., 8, Akad. Verlag, Berlin, 1995, 334–352 | MR | Zbl

[14] Birman M. Sh., Karadzhov G. E., Solomyak M. Z., “Boundedness conditions and spectrum estimates for the operators $b(X)a(D)$ and their analogs”, Estimates and Asimptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–90), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 85–106 | MR

[15] Birman M. Sh., Sloushch V. A., “Discrete spectrum of the periodic Schrödinger operator with a variable metric perturbed by a nonnegative potential”, Math. Model. Nat. Phenom., 5:4 (2010), 32–53 | DOI | MR | Zbl

[16] Birman M. S., Solomyak M. Z., “Negative discrete spectrum of the Schrödinger operator with large coupling constant: a qualitative discussion”, Order, Disorder and Chaos in Quantum Systems (Dubna, 1989), Oper. Theory Adv. Appl., 46, Birkhauser, Basel, 1990, 3–16 | MR

[17] Birman M. S., Solomyak M. Z., “Schrödinger operator. Estimates for bounds states as functional-theiretical problem”, Spectral Theory of Operators (Novgorod, 1989), Amer. Math. Soc. Transl. Ser. 2, 150, Amer. Math. Soc., Providence, RI, 1992, 1–54 | MR | Zbl

[18] Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A., “The electronic properties of graphene”, Rev. Mod. Phys., 81 (2009), 109–162 | DOI

[19] Cattaneo C., “The spectrum of the continuous Laplacian on a graph”, Monatsh. Math., 124:3 (1997), 215–235 | DOI | MR | Zbl

[20] Chung F., Spectral graph theory, CBMS Reg. Conf. Ser. Math., 92, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[21] Cwikel M., “Weak type estimates for singular values and the number of bound states of Schrödinger operators”, Ann. of Math. (2), 106:1 (1977), 93–100 | DOI | MR | Zbl

[22] Hayashi Y., Higuchi Y., Nomura Y., Ogurisu O., “On the number of discrete eigenvalues of a discrete Schrödinger operator with a finitely supported potential”, Lett. Math. Phys., 106:11 (2016), 1465–1478 | DOI | MR | Zbl

[23] Hempel R., “On the asymptotic distribution of the eigenvalue branches of the Schrödinger operator $H\pm\lambda W$ in a spectral gap of $H$”, J. Reine Angew. Math., 339 (1989), 38–59 | MR

[24] Hong S. Y., Lifshits M., Nazarov A., “Small deviations in $L2$-norm for Gaussian dependent sequences”, Electron. Commun. Probab., 21:41 (2016), 1–9 | MR

[25] Isozaki H., Korotyaev E., “Inverse problems, trace formulae for discrete Schrodinger operators”, Ann. Henri Poincaré, 13:4 (2012), 751–788 | DOI | MR | Zbl

[26] Isozaki H., Morioka H., “A Rellich type theorem for discrete Schrödinger operators”, Inverse Probl. Imaging, 8:2 (2014), 475–489 | DOI | MR | Zbl

[27] Korotyaev E., Trace formulae for Schrödinger operators on lattice, arXiv: 1702.01388

[28] Korotyaev E., Laptev A., “Trace formulae for Schrödinger operators with complex-valued potentials on cubic lattices”, Bull. Math. Sci., 8:3 (2018), 453–475 | DOI | MR | Zbl

[29] Korotyaev E., Moller J., Weighted estimates for the discrete Laplacian on the cubic lattice, arXiv: 1701.03605 | MR

[30] Korotyaev E. L., Saburova N. Yu., “Spektralnye otsenki dlya operatora Shredingera na periodicheskikh diskretnykh grafakh”, Algebra i analiz, 30:4 (2018), 61–107

[31] Korotyaev E., Saburova N., “Schrödinger operators on periodic graphs”, J. Math. Anal. Appl., 420:1 (2014), 576–611 | DOI | MR | Zbl

[32] Korotyaev E., Saburova N., “Effective masses for Laplacians on periodic graphs”, J. Math. Anal. Appl., 436:1 (2016), 104–130 | DOI | MR | Zbl

[33] Korotyaev E., Saburova N., Scattering on periodic metric graphs, arXiv: 1507.06441

[34] Levin D., Solomyak M., “Rozenblum–Lieb–Cwikel inequality for Markov generators”, J. Anal. Math., 71:1 (1997), 173–193 | DOI | MR | Zbl

[35] Lieb E., “The number of bound states of one-body Schrödinger operators and the Weyl problem”, Geometry of the Laplace Operator, Proc. Sympos. Pure Math. (Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., 36, Amer. Math. Soc., Providence, RI, 1980, 241–252 | DOI | MR

[36] Lifshits M., Nazarov A., “$L_{2}$-small deviations for weighted stationary processes”, Mathematika, 64:2 (2018), 387–405 | DOI | MR | Zbl

[37] Molchanov S., Vainberg B., “Bargmann type estimates of the counting function for general Schrödinger operators”, J. Math. Sci., 184:4 (2012), 457–508 | DOI | MR | Zbl

[38] Mohar B., “The spectrum of an infinite graph”, Linear Algebra Appl., 48 (1982), 245–256 | DOI | MR | Zbl

[39] Parra D., Richard S., “Spectral and scattering theory for Schrödinger operators on perturbed topological crystals”, Rev. Math. Phys., 30:4 (2018), 1850009 | DOI | MR | Zbl

[40] Post O., Spectral analysis on graph-like spaces, Lecture Notes in Math., 2039, Springer, Heidelberg, 2012 | DOI | MR | Zbl

[41] Rozenblyum G. V., “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Dokl. AN SSSR, 202:5 (1972), 1012–1015 | Zbl

[42] Rozenblyum G. V., “Raspredelenie diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Izv. vuzov. Mat., 1976, no. 10, 75–86 | Zbl

[43] Rozenblyum G. V., Solomyak M. Z., “O spektralnykh otsenkakh dlya operatorov tipa Shredingera: sluchai maloi lokalnoi razmernosti”, Funkts. anal. i ego pril., 44:4 (2010), 21–33 | DOI | MR

[44] Rozenblum G., Solomyak M., “Counting Schrödinger boundstates: semiclassiecs and beyond”, Sobolev Spaces in Mathematics. II, Int. Math. Ser. (N.Y.), 9, Springer, New York, 2009, 329–354 | DOI | MR

[45] Rozenblum G., Solomyak M., “On the spectral estimates for the Schrödinger operator on $\mathbb{Z}^d$, $d\ge3$”, J. Math. Sci. (N.Y.), 159:2 (2009), 241–263 | DOI | MR | Zbl

[46] Rozenblum G., Solomyak M., “On spectral estimates for the Schrödinger operators in global dimension $2$”, Algebra i analiz, 25:3 (2013), 185–199 | MR

[47] Shaban W., Vainberg B., “Radiation conditions for the difference Schrödinger operators”, J. Appl. Anal., 80 (2001), 525–556 | DOI | MR | Zbl

[48] Shargorodsky E., “On negative eigenvalues of two-dimensional Schrödinger operators”, Proc. Lond. Math. Soc., 108:2 (2014), 441–483 | DOI | MR | Zbl

[49] Slousch V. A., “Priblizhennoe kommutirovanie ubyvayuschego potentsiala i funktsii ot ellipticheskogo operatora”, Algebra i analiz, 26:5 (2014), 214–226

[50] Slousch V. A., “Diskretnyi spektr periodicheskogo operatora Shredingera s peremennoi metrikoi pri vozmuschenii neotritsatelnym bystro ubyvayuschim potentsialom”, Algebra i analiz, 27:2 (2015), 196–210

[51] Sunada T., Topological crystallography, Surveys Tutorials Appl. Math. Sci., 6, Springer, Tokyo, 2013 | MR | Zbl