Homogenization of periodic Schrödinger-type equations, with lower order terms
Algebra i analiz, Tome 31 (2019) no. 6, pp. 122-196.

Voir la notice de l'article provenant de la source Math-Net.Ru

In $ L_2 (\mathbb{R}^d; \mathbb{C}^n)$, consider a selfadjoint matrix elliptic second order differential operator $ \mathcal {B}_\varepsilon $, $ 0\varepsilon \leq 1$, with periodic coefficients depending on $ \mathbf {x}/\varepsilon $. The principal part of the operator is given in a factorized form, the operator involves first and zero order terms. Approximation is found for the operator exponential $ e^{-is \mathcal {B}_\varepsilon }$, $ s \in \mathbb{R}$, for small $ \varepsilon $ in the ( $ H^r \to L_2$)-operator norm with a suitable $ r$. The results are applied to study the behavior of the solution $ \mathbf {u}_\varepsilon $ of the Cauchy problem for the nonstationary Schrödinger-type equation $ i\partial _{s} \mathbf {u}_\varepsilon = \mathcal {B}_\varepsilon \mathbf {u}_\varepsilon + \mathbf {F}$. Applications to the magnetic Schrödinger equation and the two-dimensional Pauli equation with singular potentials are considered.
Keywords: periodic differential operators, Schrödinger-type equation, homogenization, effective operator, operator error estimates.
@article{AA_2019_31_6_a3,
     author = {M. A. Dorodnyi},
     title = {Homogenization of periodic {Schr\"odinger-type} equations, with lower order terms},
     journal = {Algebra i analiz},
     pages = {122--196},
     publisher = {mathdoc},
     volume = {31},
     number = {6},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_6_a3/}
}
TY  - JOUR
AU  - M. A. Dorodnyi
TI  - Homogenization of periodic Schrödinger-type equations, with lower order terms
JO  - Algebra i analiz
PY  - 2019
SP  - 122
EP  - 196
VL  - 31
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_6_a3/
LA  - ru
ID  - AA_2019_31_6_a3
ER  - 
%0 Journal Article
%A M. A. Dorodnyi
%T Homogenization of periodic Schrödinger-type equations, with lower order terms
%J Algebra i analiz
%D 2019
%P 122-196
%V 31
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_6_a3/
%G ru
%F AA_2019_31_6_a3
M. A. Dorodnyi. Homogenization of periodic Schrödinger-type equations, with lower order terms. Algebra i analiz, Tome 31 (2019) no. 6, pp. 122-196. http://geodesic.mathdoc.fr/item/AA_2019_31_6_a3/

[1] Allaire G., Piatnitski A., “Homogenization of the Schrödinger equation and effective mass theorems”, Comm. Math. Phys., 258 (2005), 1–22 | DOI | MR | Zbl

[2] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[3] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analisys for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978 | MR

[4] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108

[5] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104

[7] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130

[8] Birman M. Sh., Suslina T. A., “Operatornye otsenki pogreshnosti pri usrednenii nestatsionarnykh periodicheskikh uravnenii”, Algebra i analiz, 20:6 (2008), 30–107

[9] Borisov D. I., “Asimptotiki reshenii ellipticheskikh sistem s bystro ostsilliruyuschimi koeffitsientami”, Algebra i analiz, 20:2 (2008), 19–42

[10] Conca C., Orive R., Vanninathan M., “Bloch approximation in homogenization and applications”, SIAM J. Math. Anal., 33:5 (2002), 1166–1198 | DOI | MR | Zbl

[11] Vasilevskaya E. S., “Usrednenie parabolicheskoi zadachi Koshi s periodicheskimi koeffitsientami pri uchete korrektora”, Algebra i analiz, 21:1 (2009), 3–60 | MR

[12] Vasilevskaya E. S., Suslina T. A., “Usrednenie parabolicheskikh i ellipticheskikh periodicheskikh operatorov v $L_2 (\mathbb{R}^d)$ pri uchete pervogo i vtorogo korrektorov”, Algebra i analiz, 24:2 (2012), 1–103 | MR

[13] Dorodnyi M. A., Suslina T. A., “Usrednenie giperbolicheskikh uravnenii”, Funkts. anal. i ego pril., 50:4 (2016), 91–96 | DOI | MR | Zbl

[14] Dorodnyi M. A., Suslina T. A., “Spectral Approach to Homogenization of Hyperbolic Equations With Periodic Coefficients”, J. Differential Equations, 264:12 (2018), 7463–7522 | DOI | MR | Zbl

[15] Zhikov V. V., “O nekotorykh otsenkakh iz teorii usredneniya”, Dokl. RAN, 406:5 (2006), 597–601 | MR | Zbl

[16] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993

[17] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[18] Zhikov V. V., Pastukhova S. E., “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | DOI | MR | Zbl

[19] Zhikov V. V., Pastukhova S. E., “Ob operatornykh otsenkakh v teorii usredneniya”, Uspekhi mat. nauk, 71:3 (2016), 27–122 | DOI | MR | Zbl

[20] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972

[21] Meshkova Yu. M., “Usrednenie zadachi Koshi dlya parabolicheskikh sistem s periodicheskimi koeffitsientami”, Algebra i analiz, 25:6 (2013), 125–177 | MR

[22] Meshkova Yu. M., On operator error estimates for homogenization of hyperbolic systems with periodic coeffcients, 2017, arXiv: 1705.02531 | MR | Zbl

[23] Meshkova Yu. M., “Ob usrednenii periodicheskikh giperbolicheskikh sistem”, Mat. zametki, 105:6 (2019), 937–942 | DOI | MR | Zbl

[24] Sevostyanova E. V., “Asimptoticheskoe razlozhenie resheniya ellipticheskogo uravneniya vtorogo poryadka s periodicheskimi bystro ostsilliruyuschimi koeffitsientami”, Mat. sb., 115:2 (1981), 204–222 | MR | Zbl

[25] Suslina T. A., “Ob usrednenii periodicheskikh parabolicheskikh sistem”, Funkts. anal. i ego pril., 38:4 (2004), 86–90 | DOI | MR | Zbl

[26] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem”, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Math. Soc., Providence, RI, 2007, 201–233 | MR | Zbl

[27] Suslina T. A., “Homogenization of a periodic parabolic Cauchy problem in the Sobolev space $H^1(\mathbb{R}^d)$”, Math. Model. Nat. Phenom., 5:4 (2010), 390–447 | DOI | MR | Zbl

[28] Suslina T. A., “Usrednenie v klasse Soboleva $H^1(\mathbb{R}^d)$ dlya periodicheskikh ellipticheskikh differentsialnykh operatorov vtorogo poryadka pri vklyuchenii chlenov pervogo poryadka”, Algebra i analiz, 22:1 (2010), 108–222

[29] Suslina T. A., “Approksimatsiya rezolventy dvuparametricheskogo kvadratichnogo operatornogo puchka vblizi nizhnego kraya spektra”, Algebra i analiz, 25:5 (2013), 221–251

[30] Suslina T. A., “Usrednenie ellipticheskikh sistem s periodicheskimi koeffitsientami: operatornye otsenki pogreshnosti v $L_2(\mathbb{R}^d)$ s uchetom korrektora”, Algebra i analiz, 26:4 (2014), 195–263 | MR

[31] Suslina T. A., “Usrednenie uravnenii tipa Shredingera”, Funkts. anal. i ego pril., 50:3 (2016), 90–96 | DOI | MR | Zbl

[32] Suslina T. A., “Spectral approach to homogenization of nonstationary Schrödinger-type equations”, J. Math. Anal. Appl., 446:2 (2017), 1466–1523 | DOI | MR | Zbl