Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_6_a1, author = {E. Yu. Voronetsky}, title = {Groups normalized by the odd unitary group}, journal = {Algebra i analiz}, pages = {38--78}, publisher = {mathdoc}, volume = {31}, number = {6}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_6_a1/} }
E. Yu. Voronetsky. Groups normalized by the odd unitary group. Algebra i analiz, Tome 31 (2019) no. 6, pp. 38-78. http://geodesic.mathdoc.fr/item/AA_2019_31_6_a1/
[1] Artin E., Geometricheskaya algebra, Nauka, M., 1969
[2] Vavilov N. A., Petrov V. A., “O nadgruppakh $\mathrm{EO}(2l,R)$”, Zap. nauch. semin. POMI, 272, 2000, 68–85 | MR | Zbl
[3] Vavilov N. A., Petrov V. A., “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR
[4] Vavilov N. A., Petrov V. A., “O nadgruppakh $\mathrm{EO}(n,R)$”, Algebra i analiz, 19:2 (2007), 10–51 | MR
[5] Vavilov N. A., Stepanov A. V., “Nadgruppy poluprostykh grupp”, Vestnik SamGU. Estestvennonauch. ser., 2008, no. 3, 51–95 | Zbl
[6] Vasershtein L. N., “Stabilizatsiya unitarnykh i ortogonalnykh grupp nad koltsom s involyutsiei”, Mat. sb., 81:3 (1970), 328–351
[7] Vasershtein L. N., “Stabilizatsiya dlya klassicheskikh grupp nad koltsami”, Mat. sb., 93:2 (1974), 268–295
[8] Golubchik I. Z., “O normalnykh delitelyakh ortogonalnoi gruppy nad assotsiativnym koltsom s involyutsiei”, Uspekhi mat. nauk, 30:6 (1975), 165 | Zbl
[9] Petrov V. A., “Nechetnye unitarnye gruppy”, Zap. nauch. semin. POMI, 305, 2003, 195–225
[10] Suslin A. A., “O strukture spetsialnoi lineinoi gruppy nad koltsami mnogochlenov”, Izv. AN SSSR. Ser. mat., 41:2 (1977), 235–252 | MR | Zbl
[11] Bak A., The stable structure of quadratic modules, Thesis, Columbia Univ., 1969
[12] Bak A., $K$-Theory of forms, Ann. of Math. Stud., 98, Princeton Univ. Press, Princeton, NJ, 1982
[13] Bak A., “Nonabelian $K$-theory: the nilpotent class of $K_1$ and general stability”, K-Theory, 4:4 (1991), 363–397 | DOI | MR | Zbl
[14] Bak A., Hazrat R., Vavilov N., “Localisation-completion strikes again: relative $K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213:6 (2009), 1075–1085 | DOI | MR | Zbl
[15] Bak A., Preusser R., “The E-normal structure of odd-dimensional unitary groups”, J. Pure Appl. Algebra, 222:9 (2018), 2823–2880 | DOI | MR | Zbl
[16] Bak A., Vavilov N., “Normality for elementary subgroup functors”, Math. Proc. Cambridge Philos. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[17] Bak A., Vavilov N., “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[18] Bass H., “$K$-theory and stable algebra”, Publ. Math. Inst. Hautes Etudes Sci., 22 (1964), 5–60 | DOI | MR
[19] Bass H., “Unitary algebraic $K$-theory”, Lecture Notes in Math., 342, Springer, Berlin, 1973, 57–265 | DOI | MR
[20] Dieudonné J., On the automorphism of the classical groups, Mem. Amer. Math. Soc., 2, 1951, 1–122 pp. | MR
[21] Dieudonné J., Sur les groupes classiques, Act. Sci. Industr., 1040, 3-eme ed., Hermann, Paris, 1973 | MR
[22] Dieudonné J., La géometrie des groupes classiques, Ergeb. Math. Grenzgeb., 5, 3-eme ed., Springer Verlag, Berlin, 1971 | MR
[23] Hahn A., O'Meara O. T., The classical groups and $K$-theory, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | DOI | MR | Zbl
[24] Hazrat R., “Dimension theory and nonstable $K_1$ of quadratic modules”, K-Theory, 27:4 (2002), 293–328 | DOI | MR | Zbl
[25] Hazrat R., Vavilov N., “Bak's work on the $K$-theory of rings”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[26] Hong You, “Overgroups of symplectic groups in linear group over commutative rings”, J. Algebra, 282:1 (2004), 23–32 | DOI | MR | Zbl
[27] Hong You, “Overgroups of classical groups over commutative ring in linear group”, J. Algebra, 304:2 (2006), 1004–1013 | DOI | MR | Zbl
[28] Knus M.-A., Quadratic and hermitian forms over rings, Grundlehren Math. Wiss., 294, Springer-Verlag, Berlin, 1991 | DOI | MR | Zbl
[29] Li Fu An, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica (N.S.), 3:3 (1987), 247–255 | DOI | MR
[30] Li Fu An, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl
[31] Petrov V. A., “Overgroups of unitary groups”, K-Theory, 29:3 (2003), 147–174 | DOI | MR | Zbl
[32] Preusser R., “Structure of hyperbolic unitary groups II: classification of E-normal subgroups”, Algebra Colloq., 24:2 (2017), 195–232 | DOI | MR | Zbl
[33] Preusser R., “Sandwich classification for $\mathrm{GL}_n(R)$, $\mathrm O_{2n}(R)$ and $\mathrm U_{2n}(R, \Lambda)$ revisited”, J. Group Theory, 21:1 (2017), 21–44 | DOI | MR
[34] Preusser R., “Sandwich classification for $O_{2n + 1}(R)$ and $U_{2n + 1}(R, \Delta)$ revisited”, J. Group Theory, 21:4 (2018), 539–571 | DOI | MR | Zbl
[35] Tang Guoping, “Hermitian groups and $K$-theory”, K-Theory, 13:3 (1998), 209–267 | DOI | MR | Zbl
[36] Tits J., “Formes quadratiques, groupes orthogonaux et algébres de Clifford”, Invent. Math., 5 (1968), 19–41 | DOI | MR | Zbl
[37] Vaserstein L., “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl
[38] Vaserstein L., “Normal subgroups of symplectic groups over rings”, K-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl
[39] Vaserstein L., You Hong, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR
[40] Vavilov N., “Intermediate subgroups in Chevalley groups”, Groups of Lie Type and their Geometries (Como, 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, 233–280 | MR | Zbl
[41] Wall C. T. C., “On the axiomatic foundation of the theory of Hermitian forms”, Proc. Cambridge. Phil. Soc., 67 (1970), 243–250 | DOI | MR | Zbl
[42] Weil A., “Algebras with involution and classical groups”, J. Indian Math. Soc. (N.S.), 24 (1961), 589–623 | MR | Zbl
[43] Wilson J., “The normal and subnormal structure of general linear groups”, Proc. Cambridge Philos. Soc., 71 (1972), 163–177 | DOI | MR | Zbl