Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$
Algebra i analiz, Tome 31 (2019) no. 5, pp. 184-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the author's earlier paper [Revyakov M., J. Multivariate Anal. 116 (2013) 25-34] concerning mathematical statistics, a need arose to employ functions called "Schur-convex functions of the $2$nd order with respect to two variables". In the present paper, the class of Schur-convex functions of the $2$nd order in $ n$ variables is introduced. Necessary and sufficient conditions (in the form of analogs of the Sylvester criterion) are established for a function to belong to this class. Examples are given of using Schur-convex functions of the $2$nd order for achieving maximal system reliability on the set of all possible allocations of elements into its subsystems.
Keywords: Schur-convex function, Hessian matrix, Sylvester criterion, system reliability, ordered allocation, majorization on a line.
@article{AA_2019_31_5_a5,
     author = {M. I. Revyakov},
     title = {Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$},
     journal = {Algebra i analiz},
     pages = {184--205},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a5/}
}
TY  - JOUR
AU  - M. I. Revyakov
TI  - Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$
JO  - Algebra i analiz
PY  - 2019
SP  - 184
EP  - 205
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_5_a5/
LA  - ru
ID  - AA_2019_31_5_a5
ER  - 
%0 Journal Article
%A M. I. Revyakov
%T Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$
%J Algebra i analiz
%D 2019
%P 184-205
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_5_a5/
%G ru
%F AA_2019_31_5_a5
M. I. Revyakov. Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$. Algebra i analiz, Tome 31 (2019) no. 5, pp. 184-205. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a5/

[1] Bernstein B., Toupin R., “Some properties of the Hessian matrix of a strictly convex function”, J. Reine Angev. Math., 210 (1962), 65–72 | MR | Zbl

[2] El-Neveihi E., Proschan F., Sethuraman J., “Optimal assembly of systems using Schur functions and majorization”, Naval Res. Logist., 34:5 (1987), 705–712 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[3] Gantmakher F. R., Teoriya matrits, Izd. 2-e, dop., Nauka, M., 1966 | MR

[4] Gruber P., Convex and discrete geometry, Grundlehren Math. Wiss., 336, Springer, Berlin, 2007 | MR | Zbl

[5] Marshall A., Olkin I., Arnold B., Inequalities: theory of majorization and its applications, Springer Ser. Statist., 2nd ed., Springer, New York, 2011 | DOI | MR | Zbl

[6] “Parametricheskoe uravnenie”, Mat. entsiklopediya, v. 4, Sov. entsiklopediya, M., 1984, 221–222

[7] Rajendra Prasad V., Nair K. P. K., Aneja Y. P., “Optimal assignment of components to parallel-series and series-parallel systems”, Oper. Res., 39:3 (1991), 407–414 | DOI | MR | Zbl

[8] Revyakov M., “Component allocation for a distributed system: reliability maximization”, J. Appl. Prob., 30:2 (1993), 471–477 | DOI | MR | Zbl

[9] Revyakov M., “Schur-convexity of $2$nd order, certain subclass of multivariate arrangement increasing functions with applications in statistics”, J. Multivariate Anal., 116 (2013), 25–34 | DOI | MR | Zbl