Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_5_a5, author = {M. I. Revyakov}, title = {Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$}, journal = {Algebra i analiz}, pages = {184--205}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a5/} }
M. I. Revyakov. Schur-convex functions of the $2$nd order on $ \mathbb{R}^n$. Algebra i analiz, Tome 31 (2019) no. 5, pp. 184-205. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a5/
[1] Bernstein B., Toupin R., “Some properties of the Hessian matrix of a strictly convex function”, J. Reine Angev. Math., 210 (1962), 65–72 | MR | Zbl
[2] El-Neveihi E., Proschan F., Sethuraman J., “Optimal assembly of systems using Schur functions and majorization”, Naval Res. Logist., 34:5 (1987), 705–712 | 3.0.CO;2-P class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[3] Gantmakher F. R., Teoriya matrits, Izd. 2-e, dop., Nauka, M., 1966 | MR
[4] Gruber P., Convex and discrete geometry, Grundlehren Math. Wiss., 336, Springer, Berlin, 2007 | MR | Zbl
[5] Marshall A., Olkin I., Arnold B., Inequalities: theory of majorization and its applications, Springer Ser. Statist., 2nd ed., Springer, New York, 2011 | DOI | MR | Zbl
[6] “Parametricheskoe uravnenie”, Mat. entsiklopediya, v. 4, Sov. entsiklopediya, M., 1984, 221–222
[7] Rajendra Prasad V., Nair K. P. K., Aneja Y. P., “Optimal assignment of components to parallel-series and series-parallel systems”, Oper. Res., 39:3 (1991), 407–414 | DOI | MR | Zbl
[8] Revyakov M., “Component allocation for a distributed system: reliability maximization”, J. Appl. Prob., 30:2 (1993), 471–477 | DOI | MR | Zbl
[9] Revyakov M., “Schur-convexity of $2$nd order, certain subclass of multivariate arrangement increasing functions with applications in statistics”, J. Multivariate Anal., 116 (2013), 25–34 | DOI | MR | Zbl