The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees
Algebra i analiz, Tome 31 (2019) no. 5, pp. 106-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

The explicit upper Bellman function is found for the natural dyadic maximal operator acting from $ \mathrm {BMO}(\mathbb{R}^n)$ into $ \mathrm {BLO}(\mathbb{R}^n)$. As a consequence, it is shown that the $ \mathrm {BMO}\to \mathrm {BLO}$ norm of the natural operator equals $ 1$ for all $ n$, and so does the norm of the classical dyadic maximal operator. The main result is a partial consequence of a theorem for the so-called $ \alpha $-trees, which generalize dyadic lattices. The Bellman function in this setting exhibits an interesting quasiperiodic structure depending on $ \alpha $, but also allows a majorant independent of $ \alpha $, hence a dimension-free norm constant. Also, the decay of the norm is described with respect to the growth of the difference between the average of a function on a cube and the infimum of its maximal function on that cube. An explicit norm-optimizing sequence is constructed.
Keywords: BMO, BLO $\alpha$-trees, maximal functions, explicit Bellman function, sharp constants.
@article{AA_2019_31_5_a3,
     author = {V. Vasyunin and A. Os\c{e}kowski and L. Slavin},
     title = {The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees},
     journal = {Algebra i analiz},
     pages = {106--153},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a3/}
}
TY  - JOUR
AU  - V. Vasyunin
AU  - A. Osȩkowski
AU  - L. Slavin
TI  - The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees
JO  - Algebra i analiz
PY  - 2019
SP  - 106
EP  - 153
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_5_a3/
LA  - ru
ID  - AA_2019_31_5_a3
ER  - 
%0 Journal Article
%A V. Vasyunin
%A A. Osȩkowski
%A L. Slavin
%T The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees
%J Algebra i analiz
%D 2019
%P 106-153
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_5_a3/
%G ru
%F AA_2019_31_5_a3
V. Vasyunin; A. Osȩkowski; L. Slavin. The $ \mathrm{BMO}\rightarrow\mathrm{BLO}$ action of the maximal operator on $\alpha$-trees. Algebra i analiz, Tome 31 (2019) no. 5, pp. 106-153. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a3/

[1] Bañuelos R., Osȩkowski A., “Sharp weak type inequalities for fractional integral operators”, Potential Anal., 47:1 (2017), 103–121 | DOI | MR

[2] Bennett C., “Another characterization of BLO”, Proc. Amer. Math. Soc., 85:4 (1982), 552–556 | DOI | MR | Zbl

[3] Bennett C., DeVore R. A., Ronald A., Sharpley R., “Weak-$L^\infty$ and BMO”, Ann. of Math. (2), 113:3 (1981), 601–611 | DOI | MR | Zbl

[4] Coifman R., Rochberg R., “Another characterization of BMO”, Proc. Amer. Math. Soc., 79:2 (1980), 249–254 | DOI | MR | Zbl

[5] Ivanishvili P., Osipov N., Stolyarov D., Vasyunin V., Zatitskiy P., “Bellman function for extremal problems in BMO”, Trans. Amer. Math. Soc., 368:5 (2016), 3415–3468 | DOI | MR

[6] Melas A., “The Bellman functions of dyadic-like maximal operators and related inequalities”, Adv. Math., 192:2 (2005), 310–340 | DOI | MR | Zbl

[7] Melas A., “Sharp general local estimates for dyadic-like maximal operators and related Bellman functions”, Adv. Math., 220:2 (2009), 367–426 | DOI | MR | Zbl

[8] Melas A., Nikolidakis E., “Dyadic-like maximal operators on integrable functions and Bellman functions related to Kolmogorov's inequality”, Trans. Amer. Math. Soc., 362:3 (2010), 1571–1597 | DOI | MR | Zbl

[9] Melas A., Nikolidakis E., Stavropoulos T., “Sharp local lower $L^p$-bounds for dyadic-like maximal operators”, Proc. Amer. Math. Soc., 141:9 (2013), 3171–3181 | DOI | MR | Zbl

[10] Nazarov A., Treil S., “Okhota na funktsiyu Bellmana: prilozheniya k otsenkam singulyarnykh integralnykh operatorov ikd rugim klassicheskim zadacham garmonicheskogo analiza”, Algebra i analiz, 8:5 (1996), 32–162

[11] Osȩkowski A., “Sharp inequalities for dyadic $A_1$ weights”, Arch. Math. (Basel), 101:2 (2013), 181–190 | DOI | MR

[12] Osȩkowski A., “Sharp weak-type inequality for fractional integral operators associated with $d$-dimensional Walsh–Fourier series”, Integral Equations Operator Theory, 78:4 (2014), 589–600 | DOI | MR

[13] Ou W., “The natural maximal operator on BMO”, Proc. Amer. Math. Soc., 129:10 (2001), 2919–2921 | DOI | MR | Zbl

[14] Ou W., “Near-symmetry in $A^\infty$ and refined Jones factorization”, Proc. Amer. Math. Soc., 136:9 (2008), 3239–3245 | DOI | MR | Zbl

[15] Slavin L., Vasyunin V., “Sharp $L^p$ estimates on BMO”, Indiana Univ. Math. J., 61:3 (2012), 1051–1110 | DOI | MR | Zbl

[16] Slavin L., Stokolos A., Vasyunin V., “Monge–Ampère equations and Bellman functions: the dyadic maximal operator”, C. R. Math. Acad. Sci. Paris, 346:9–10 (2008), 585–588 | DOI | MR | Zbl

[17] Slavin L., Vasyunin V., “Inequalities for BMO on $\alpha$-trees”, Int. Math. Res. Not. IMRN, 13 (2016), 4078–4102 | DOI | MR | Zbl

[18] Slavin L. (ed.), Vasyunin V., Cincinnati lectures on Bellman functions, 2011, arXiv: 1508.07668