Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_5_a2, author = {S. V. Buyalo}, title = {SRA-free condition by {Zolotov} for self-contracted curves and nondegeneracy of the zz-distance for {M\"obius} structures on the circle}, journal = {Algebra i analiz}, pages = {90--105}, publisher = {mathdoc}, volume = {31}, number = {5}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a2/} }
TY - JOUR AU - S. V. Buyalo TI - SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle JO - Algebra i analiz PY - 2019 SP - 90 EP - 105 VL - 31 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_5_a2/ LA - ru ID - AA_2019_31_5_a2 ER -
%0 Journal Article %A S. V. Buyalo %T SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle %J Algebra i analiz %D 2019 %P 90-105 %V 31 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2019_31_5_a2/ %G ru %F AA_2019_31_5_a2
S. V. Buyalo. SRA-free condition by Zolotov for self-contracted curves and nondegeneracy of the zz-distance for Möbius structures on the circle. Algebra i analiz, Tome 31 (2019) no. 5, pp. 90-105. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a2/
[1] Buyalo S. V., “Mebiusovy struktury i prichinno-sledstvennye prostranstva so vremenem na okruzhnosti”, Algebra i analiz, 29:5 (2017), 1–50
[2] Buyalo S., On the inverse problem of Möbius geometry on the circle, arXiv: math.MG/1810.03133
[3] Daniilidis A., David G., Durand-Cartagena E., Lemenant A., “Rectifiability of self-contracted curves in the Euclidean space and applications”, J. Geom. Anal., 25:2 (2015), 1211–1239 | DOI | MR | Zbl
[4] Daniilidis A., Deville R., Durand-Cartagena E., Rifford L., “Self-contracted curves in Riemannian manifolds”, J. Math. Anal. Appl., 457:2 (2018), 1333–1352 | DOI | MR | Zbl
[5] Daniilidis A., Ley O., Sabourau S., “Asymptotic behaviour of self-contracted planar curves and gradient orbits of convex functions”, J. Math. Pures Appl., 94:2 (2010), 183–199 | DOI | MR | Zbl
[6] Foertsch T., Schroeder V., “Ptolemy circles and Ptolemy segments”, Arch. Math. (Basel), 98:6 (2012), 571–581 | DOI | MR | Zbl
[7] Foertsch T., Schroeder V., “Metric Möbius geometry and a characterization of spheres”, Manuscripta Math., 140:3–4 (2013), 613–620 | DOI | MR | Zbl
[8] Lemenant A., Rectifiability of non Euclidean planar self-contracted curves, Confluentes Mathematici, 2017 | MR
[9] Shin-ichi Ohta, Self-contracted curves in $\mathrm{CAT}(0)$-spaces and their rectifiability, 2017, arXiv: 1711.09284
[10] Lebedeva N., Shin-ichi Ohta, Zolotov V., Self-contracted curves in spaces with weak lower curvature bound, arXiv: 1902.01594
[11] Stepanov E., Teplitskaya Y., “Self-contracted curves have finite length”, J. London Math. Soc. (2), 96:2 (2017), 455–481 | DOI | MR | Zbl
[12] Zolotov V., Subsets with small angles in self-contraced curves, 2018, arXiv: 1804.00234 [math.MG] | Zbl