Cyclicity of nonvanishing functions in the polydisk and in the ball
Algebra i analiz, Tome 31 (2019) no. 5, pp. 1-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special version of the corona theorem in several variables, valid when all but one of the data functions are smooth, is used to generalize, to the polydisk and to the ball, the results obtained by El Fallah, Kellay, and Seip about the cyclicity of nonvanishing bounded holomorphic functions in sufficiently large Banach spaces of analytic functions determined either by weighted sums of powers of Taylor coefficients or by radially weighted integrals of powers of the modulus of the function.
Keywords: hardy space, Bergman space, power series, cyclic function.
@article{AA_2019_31_5_a0,
     author = {E. Amar and P. J. Thomas},
     title = {Cyclicity of nonvanishing functions in the polydisk and in the ball},
     journal = {Algebra i analiz},
     pages = {1--23},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_5_a0/}
}
TY  - JOUR
AU  - E. Amar
AU  - P. J. Thomas
TI  - Cyclicity of nonvanishing functions in the polydisk and in the ball
JO  - Algebra i analiz
PY  - 2019
SP  - 1
EP  - 23
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_5_a0/
LA  - en
ID  - AA_2019_31_5_a0
ER  - 
%0 Journal Article
%A E. Amar
%A P. J. Thomas
%T Cyclicity of nonvanishing functions in the polydisk and in the ball
%J Algebra i analiz
%D 2019
%P 1-23
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_5_a0/
%G en
%F AA_2019_31_5_a0
E. Amar; P. J. Thomas. Cyclicity of nonvanishing functions in the polydisk and in the ball. Algebra i analiz, Tome 31 (2019) no. 5, pp. 1-23. http://geodesic.mathdoc.fr/item/AA_2019_31_5_a0/

[1] Amar E., “A problem of ideals”, Astérisque, 217, 1993, 9–13 | MR | Zbl

[2] Amar E., Menini C., “Universal divisors in Hardy spaces”, Studia Math., 143:1 (2000), 1–21 | DOI | MR | Zbl

[3] Borichev A., Hedenmalm H., “Completeness of translates in weighted spaces on the half-line”, Acta Math., 174:1 (1995), 1–84 | DOI | MR | Zbl

[4] Cegrell U., “Representing measures in the spectrum of $H^\infty(\Omega)$”, Complex analysis (Wuppertal, 1991), Aspects Math., E17, Friedr. Vieweg, Braunschweig, 77–80 | MR

[5] El-Fallah O., Kellay K., Seip K., “Cyclicity of singular inner functions from the corona theorem”, J. Inst. Math. Jussieu, 11:4 (2012), 815–824 | DOI | MR | Zbl

[6] Hartz M., “Von Neumann's inequality for commuting weighted shifts”, Indiana Univ. Math. J., 66:4 (2017), 1065–1079 | DOI | MR | Zbl

[7] Hedenmalm H., Korenblum B., Zhu K., Theory of Bergman spaces, Grad. Texts in Math., 199, Springer-Verlag, New York, 2000 | DOI | MR | Zbl

[8] Hörmander L., “Generators for some rings of analytic functions”, Bull. Amer. Math. Soc., 73 (1967), 943–949 | DOI | MR | Zbl

[9] Hörmander L., An introduction to complex analysis in several variables, North-Holland Math. Library, 7, Third ed., North-Holland Publ. Co., Amsterdam, 1990 | MR | Zbl

[10] Krantz S. G., Function theory of several complex variables, Second ed., Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA, 1992 | MR | Zbl

[11] Nikolskii N. K., “Izbrannye zadachi vesovoi approksimatsii i spektralnogo analiza”, Tr. Mat. in-ta AN SSSR, 120, 1974, 3–272

[12] Rudin W., Function theory in polydiscs, W. A. Benjamin, Inc., New York, 1969 | MR | Zbl

[13] Rudin W., Function theory in the unit ball of $\mathbb{C}^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York, 1980 | DOI | MR