Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras
Algebra i analiz, Tome 31 (2019) no. 4, pp. 48-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a noncommutative holomorphic functional calculus and its application to noncommutative algebraic geometry. A description is given for the noncommutative (infinite-dimensional) affine spaces $ \mathbb{A}_q^{\mathbf {x}}$, $ 1\leq q\leq \infty $, $ \mathbf {x}=(x_{\iota })_{\iota \in \Xi }$, and for the projective spaces $ \mathbb{P}_q^n$ within Kapranov's model of noncommutative algebraic geometry based on the sheaf of formally-radical holomorphic functions of elements of a nilpotent Lie algebra and on the related functional calculus. The obtained result for $ q=\infty $ generalizes Kapranov's formula in the finite dimensional case of $ \mathbb{A}_q^n$. The noncommutative scheme $ \mathbb{P}_q^n$ corresponds to the graded universal enveloping algebra $ \mathcal {U}(\mathfrak{g}_q(\mathbf {x}))$ of the free nilpotent Lie algebra of index $ q$ generated by $ \mathbf {x}=(x_0,\dots ,x_n)$ with $ \deg (x_i)=1$, $ 0\leq i\leq n$. A sheaf construction $ B\big (\mathbb{P}^n,f_q,\mathcal {O}(-2),\dots ,\mathcal {O}(-q)\big )$ is suggested, in terms of the twisted sheaves $ \mathcal {O}(-2)$, $ \dots $, $ \mathcal {O}(-q)$ on $ \mathbb{P}^n$ and the formal power series $ f_q$, to restore the coordinate ring of $ \mathbb{P}_q^n$ that is reduced to $ \mathcal {U}(\mathfrak{g}_q(\mathbf {x}))$. Finally, the related cohomology groups $ H^i\big (\mathbb{P}_q^n$, $ \mathcal {O}_q(d)\big )$, $ i\geq 0$, are calculated.
Keywords: noncommutative holomorphic functional calculus, affine $\operatorname{NC}$-space, projective $\operatorname{NC}$-space, projective line of Heisenberg, formally-radical functions, noncommutative scheme.
@article{AA_2019_31_4_a2,
     author = {A. Dosi},
     title = {Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras},
     journal = {Algebra i analiz},
     pages = {48--113},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/}
}
TY  - JOUR
AU  - A. Dosi
TI  - Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras
JO  - Algebra i analiz
PY  - 2019
SP  - 48
EP  - 113
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/
LA  - en
ID  - AA_2019_31_4_a2
ER  - 
%0 Journal Article
%A A. Dosi
%T Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras
%J Algebra i analiz
%D 2019
%P 48-113
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/
%G en
%F AA_2019_31_4_a2
A. Dosi. Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras. Algebra i analiz, Tome 31 (2019) no. 4, pp. 48-113. http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/

[1] Artin M., Zhang J. J., “Noncommutative projective schemes”, Adv. Math., 109:2 (1994), 228–287

[2] Artin M., Van den Bergh M., “Twisted homogeneous coordinate rings”, J. Algebra, 133:2 (1990), 249–271

[3] Artin M., Tate J., Van den Bergh M., “Some algebras associated to automorphisms of elliptic curves”, The Grothendieck Festschrift. I, Progr. Math., 86, Birkhauser, Boston, MA, 1990, 33–85

[4] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965

[5] Burbaki N., Gruppy i algebry Li. Algebry Li, svobodnye algebry Li i gruppy Li, Mir, M., 1976

[6] Burbaki N., Kommutativnaya algebra, Elementy matematiki, 27–31, Mir, M., 1971

[7] Chan D., “Twisted multi-homogeneous coordinate rings”, J. Algebra, 223:2 (2000), 438–456

[8] Cortinas G., “De Rham and infinitesimal cohomology in Kapranov's model for noncommutative algebraic geometry”, Compositio Math., 136:2 (2003), 171–208

[9] Dosiev A. A., “Algebry stepennykh ryadov ot elementov algebry Li i spektry Slodkovskogo”, Zap. nauch. semin. POMI, 290, 2002, 72–121

[10] Dosi A. A.,, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloq., 17:1, Spec. Iss. (2010), 749–788

[11] Dosiev A. A., “Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems”, J. Funct. Anal., 230:2 (2006), 446–493

[12] Dosi A. A.,, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 101–126

[13] Dosiev A. A., “Fréchet sheaves and Taylor spectrum for supernilpotent Lie algebra of operators”, Mediterr. J. Math., 6:2 (2009), 181–201

[14] Dosi A. A., “Nekommutativnye golomorfnye funktsii ot elementov algebry Li i zadacha ob absolyutnom bazise”, Izv. RAN. Ser. mat., 73:6 (2009), 77–100

[15] Dosiev A. A., “Local left invertibility for operator tuples and noncommutative localizations”, J. $K$-Theory, 4:1 (2009), 163–191

[16] Dosi A. A., “Noncommutative affine spaces and Lie-complete rings”, C. R. Math. Akad. Sci. Paris, 353:2 (2015), 149–153

[17] Dosi A. A., “Noncommutative localizations of Lie-complete rings”, Comm. Algebra, 44:11 (2016), 4892–4944

[18] Dosi A. A., Istanbul Analysis Seminars (2015) http://web.iku.edu.tr/ias/documents/talksteklov15.pdf

[19] Dosi A. A., Dosi Y. M., Noncommutative projective geometry of universal enveloping algebra of the free nilpotent Lie algebra of index $2$, Preprint

[20] Grothendieck A., “Éléments de géométrie algébrique, I. Le langage des schémas”, Inst. Hautes Études Sci. Publ. Math., 4 (1960), 5–228

[21] Gupta N., Levin F., “On the Lie ideals of an algebra”, J. Algebra, 81:1 (1983), 225–231

[22] Giambruno A., Sehgal S. K., “A Lie property in group rings”, Proc. Amer. Math. Soc., 105:2 (1989), 287–292

[23] Hartshorne R., Algebraic geometry, Grad. Texts. in Math., 52, Springer-Verlag, New York, 1977

[24] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, MGU, M., 1986

[25] Jennings S. A., “On rings whose associated Lie rings are nilpotent”, Bull. Amer. Math. Soc., 53 (1951), 593–597

[26] Kapranov M., “Noncommutative geometry based on commutator expansions”, J. Reine Angew. Math., 505 (1998), 73–118

[27] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991

[28] Karasev M. V., “Nekotorye formuly dlya funktsii ot uporyadochennykh operatorov”, Mat. zametki, 18:2 (1975), 267–277

[29] Keeler D. S., “The rings of noncommutative projective geometry”, Advanced Algebra and Geometry (Hyderabad, 2001), Hindustan Book Agency, New Delhi, 2003, 195–207

[30] Kumar K., “Expansion of a function of noncommuting operators”, J. Math Phys., 6:12 (1965), 1923–1927

[31] Orlov D. O., Smooth and proper noncommutative schemes and gluing of DG categories, arXiv: 1402.7364

[32] Pirkovskii A. Yu., “Stably flat completions of universal enveloping algebras”, Dissertationes Math., 441 (2006), 1–60

[33] Pirkovskii A. Yu., “Gomologicheskie razmernosti i izomorfizmy Van den Berga dlya yadernykh algebr Freshe”, Izv. RAN. Ser. mat., 76:4 (2012), 65–124

[34] Pirkovskii A. Yu., “Holomorphically finitely generated algebras”, J. Noncommut. Geom., 9:1 (2015), 215–264

[35] Putinar M., “Functional calculus with sections of an analytic space”, J. Operator Theory, 4:2 (1980), 297–306

[36] Rosenberg A. L., Noncommutative algebraic geometry and representation of quantum groups, Math. Appl., 330, Kluwer Acad. Publ., 1995

[37] Smith S. P., Van den Berg M., “Noncommutative quadric surfaces”, J. Noncommut. Geom., 7:3 (2013), 817–856

[38] Smith S. P., The non-commutative scheme having a free algebra as a homogeneous coordinate ring, arXiv: 1104.3822

[39] Stafford J. T., Van den Bergh M., “Noncommutative curves and noncommutative surfaces”, Bull. Amer. Math. Soc., 38:2 (2001), 171–216

[40] Taylor J. L., “Functions of several noncommuting variables”, Bull. Amer. Math. Soc., 79:1 (1973), 1–34

[41] Taylor J. L., “A general framework for a multi-operator functional calculus”, Adv. Math., 9 (1972), 183–252

[42] Van Oystaeyen F., Verschoren A. H., Non-commutative algebraic geometry, Lecture Notes in Math., 887, Springer-Verlag, Berlin, 1981