Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_4_a2, author = {A. Dosi}, title = {Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras}, journal = {Algebra i analiz}, pages = {48--113}, publisher = {mathdoc}, volume = {31}, number = {4}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/} }
TY - JOUR AU - A. Dosi TI - Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras JO - Algebra i analiz PY - 2019 SP - 48 EP - 113 VL - 31 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/ LA - en ID - AA_2019_31_4_a2 ER -
A. Dosi. Noncommutative holomorphic functional calculus, affine and projective spaces from $\operatorname{NC}$-complete algebras. Algebra i analiz, Tome 31 (2019) no. 4, pp. 48-113. http://geodesic.mathdoc.fr/item/AA_2019_31_4_a2/
[1] Artin M., Zhang J. J., “Noncommutative projective schemes”, Adv. Math., 109:2 (1994), 228–287
[2] Artin M., Van den Bergh M., “Twisted homogeneous coordinate rings”, J. Algebra, 133:2 (1990), 249–271
[3] Artin M., Tate J., Van den Bergh M., “Some algebras associated to automorphisms of elliptic curves”, The Grothendieck Festschrift. I, Progr. Math., 86, Birkhauser, Boston, MA, 1990, 33–85
[4] Burbaki N., Algebra. Mnogochleny i polya. Uporyadochennye gruppy, Nauka, M., 1965
[5] Burbaki N., Gruppy i algebry Li. Algebry Li, svobodnye algebry Li i gruppy Li, Mir, M., 1976
[6] Burbaki N., Kommutativnaya algebra, Elementy matematiki, 27–31, Mir, M., 1971
[7] Chan D., “Twisted multi-homogeneous coordinate rings”, J. Algebra, 223:2 (2000), 438–456
[8] Cortinas G., “De Rham and infinitesimal cohomology in Kapranov's model for noncommutative algebraic geometry”, Compositio Math., 136:2 (2003), 171–208
[9] Dosiev A. A., “Algebry stepennykh ryadov ot elementov algebry Li i spektry Slodkovskogo”, Zap. nauch. semin. POMI, 290, 2002, 72–121
[10] Dosi A. A.,, “Formally-radical functions in elements of a nilpotent Lie algebra and noncommutative localizations”, Algebra Colloq., 17:1, Spec. Iss. (2010), 749–788
[11] Dosiev A. A., “Cartan–Slodkowski spectra, splitting elements and noncommutative spectral mapping theorems”, J. Funct. Anal., 230:2 (2006), 446–493
[12] Dosi A. A.,, “Taylor functional calculus for supernilpotent Lie algebra of operators”, J. Operator Theory, 63:1 (2010), 101–126
[13] Dosiev A. A., “Fréchet sheaves and Taylor spectrum for supernilpotent Lie algebra of operators”, Mediterr. J. Math., 6:2 (2009), 181–201
[14] Dosi A. A., “Nekommutativnye golomorfnye funktsii ot elementov algebry Li i zadacha ob absolyutnom bazise”, Izv. RAN. Ser. mat., 73:6 (2009), 77–100
[15] Dosiev A. A., “Local left invertibility for operator tuples and noncommutative localizations”, J. $K$-Theory, 4:1 (2009), 163–191
[16] Dosi A. A., “Noncommutative affine spaces and Lie-complete rings”, C. R. Math. Akad. Sci. Paris, 353:2 (2015), 149–153
[17] Dosi A. A., “Noncommutative localizations of Lie-complete rings”, Comm. Algebra, 44:11 (2016), 4892–4944
[18] Dosi A. A., Istanbul Analysis Seminars (2015) http://web.iku.edu.tr/ias/documents/talksteklov15.pdf
[19] Dosi A. A., Dosi Y. M., Noncommutative projective geometry of universal enveloping algebra of the free nilpotent Lie algebra of index $2$, Preprint
[20] Grothendieck A., “Éléments de géométrie algébrique, I. Le langage des schémas”, Inst. Hautes Études Sci. Publ. Math., 4 (1960), 5–228
[21] Gupta N., Levin F., “On the Lie ideals of an algebra”, J. Algebra, 81:1 (1983), 225–231
[22] Giambruno A., Sehgal S. K., “A Lie property in group rings”, Proc. Amer. Math. Soc., 105:2 (1989), 287–292
[23] Hartshorne R., Algebraic geometry, Grad. Texts. in Math., 52, Springer-Verlag, New York, 1977
[24] Khelemskii A. Ya., Gomologiya v banakhovykh i topologicheskikh algebrakh, MGU, M., 1986
[25] Jennings S. A., “On rings whose associated Lie rings are nilpotent”, Bull. Amer. Math. Soc., 53 (1951), 593–597
[26] Kapranov M., “Noncommutative geometry based on commutator expansions”, J. Reine Angew. Math., 505 (1998), 73–118
[27] Karasev M. V., Maslov V. P., Nelineinye skobki Puassona. Geometriya i kvantovanie, Nauka, M., 1991
[28] Karasev M. V., “Nekotorye formuly dlya funktsii ot uporyadochennykh operatorov”, Mat. zametki, 18:2 (1975), 267–277
[29] Keeler D. S., “The rings of noncommutative projective geometry”, Advanced Algebra and Geometry (Hyderabad, 2001), Hindustan Book Agency, New Delhi, 2003, 195–207
[30] Kumar K., “Expansion of a function of noncommuting operators”, J. Math Phys., 6:12 (1965), 1923–1927
[31] Orlov D. O., Smooth and proper noncommutative schemes and gluing of DG categories, arXiv: 1402.7364
[32] Pirkovskii A. Yu., “Stably flat completions of universal enveloping algebras”, Dissertationes Math., 441 (2006), 1–60
[33] Pirkovskii A. Yu., “Gomologicheskie razmernosti i izomorfizmy Van den Berga dlya yadernykh algebr Freshe”, Izv. RAN. Ser. mat., 76:4 (2012), 65–124
[34] Pirkovskii A. Yu., “Holomorphically finitely generated algebras”, J. Noncommut. Geom., 9:1 (2015), 215–264
[35] Putinar M., “Functional calculus with sections of an analytic space”, J. Operator Theory, 4:2 (1980), 297–306
[36] Rosenberg A. L., Noncommutative algebraic geometry and representation of quantum groups, Math. Appl., 330, Kluwer Acad. Publ., 1995
[37] Smith S. P., Van den Berg M., “Noncommutative quadric surfaces”, J. Noncommut. Geom., 7:3 (2013), 817–856
[38] Smith S. P., The non-commutative scheme having a free algebra as a homogeneous coordinate ring, arXiv: 1104.3822
[39] Stafford J. T., Van den Bergh M., “Noncommutative curves and noncommutative surfaces”, Bull. Amer. Math. Soc., 38:2 (2001), 171–216
[40] Taylor J. L., “Functions of several noncommuting variables”, Bull. Amer. Math. Soc., 79:1 (1973), 1–34
[41] Taylor J. L., “A general framework for a multi-operator functional calculus”, Adv. Math., 9 (1972), 183–252
[42] Van Oystaeyen F., Verschoren A. H., Non-commutative algebraic geometry, Lecture Notes in Math., 887, Springer-Verlag, Berlin, 1981