Orders that are étale-locally isomorphic
Algebra i analiz, Tome 31 (2019) no. 4, pp. 1-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ R$ be a semilocal Dedekind domain with fraction field $ F$. It is shown that two hereditary $ R$-orders in central simple $ F$-algebras that become isomorphic after tensoring with $ F$ and with some faithfully flat étale $ R$-algebra are isomorphic. On the other hand, this fails for hereditary orders with involution. The latter stands in contrast to a result of the first two authors, who proved this statement for Hermitian forms over hereditary $ R$-orders with involution. The results can be restated by means of étale cohomology and can be viewed as variations of the Grothendieck-Serre conjecture on principal homogeneous spaces of reductive group schemes. The relationship with Bruhat-Tits theory is also discussed.
Keywords: hereditary order, maximal order, Dedekind domain, group scheme, reductive group, involution, central simple algebra.
@article{AA_2019_31_4_a0,
     author = {E. Bayer-Fluckiger and U. A. First and M. Huruguen},
     title = {Orders that are \'etale-locally isomorphic},
     journal = {Algebra i analiz},
     pages = {1--15},
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_4_a0/}
}
TY  - JOUR
AU  - E. Bayer-Fluckiger
AU  - U. A. First
AU  - M. Huruguen
TI  - Orders that are étale-locally isomorphic
JO  - Algebra i analiz
PY  - 2019
SP  - 1
EP  - 15
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_4_a0/
LA  - en
ID  - AA_2019_31_4_a0
ER  - 
%0 Journal Article
%A E. Bayer-Fluckiger
%A U. A. First
%A M. Huruguen
%T Orders that are étale-locally isomorphic
%J Algebra i analiz
%D 2019
%P 1-15
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_4_a0/
%G en
%F AA_2019_31_4_a0
E. Bayer-Fluckiger; U. A. First; M. Huruguen. Orders that are étale-locally isomorphic. Algebra i analiz, Tome 31 (2019) no. 4, pp. 1-15. http://geodesic.mathdoc.fr/item/AA_2019_31_4_a0/

[1] Abramenko P., Nebe G., “Lattice chain models for affine buildings of classical type”, Math. Ann., 322:3 (2002), 537–562

[2] Auslander M., Goldman O., “Maximal orders”, Trans. Amer. Math. Soc., 97:1 (1960), 1–24

[3] Bayer-Fluckiger E., First U. A., “Patching and weak approximation in isometry groups”, Trans. Amer. Math. Soc., 369:11 (2017), 7999–8035

[4] Bayer-Fluckiger E., First U. A., “Rationally isomorphic Hermitian forms and torsors of some non-reductive groups”, Adv. Math., 312 (2017), 150–184

[5] Bruhat F., Tits J., “Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d'une donnée radicielle valuée”, Inst. Hautes Études Sci. Publ. Math., 60 (1984), 197–376

[6] Bruhat F., Tits J., “Schémas en groupes et immeubles des groupes classiques sur un corps local”, Bull. Soc. Math. France, 112:2 (1984), 259–301

[7] Bruhat F., Tits J., “Groupes algébriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 34:3 (1987), 671–698

[8] Bruhat F., Tits J., “Schémas en groupes et immeubles des groupes classiques sur un corps local. II. Groupes unitaires”, Bull. Soc. Math. France, 115:2 (1987), 141–195

[9] Colliot-Thélène J.-L., Sansuc J.-J., “Principal homogeneous spaces under flasque tori: applications”, J. Algebra, 106:1 (1987), 148–205

[10] Demazure M., Grothendieck A., Séminaire de Géométrie Algébrique du Bois Marie 1962/64, Lecture Notes in Math., 153, Springer-Verlag, Berlin–New York, 1970

[11] Fedorov R., Panin I., “A proof of the Grothendieck–Serre conjecture on principal bundles over regular local rings containing infinite fields”, Publ. Math. Inst. Hautes Études Sci., 122 (2015), 169–193

[12] Grothendieck A., “Le groupe de Brauer. II. Théorie cohomologique”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87

[13] Grothendieck A., “Le groupe de Brauer. III. Exemples et compléments”, Dix Exposés sur la Cohomologie des Schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 88–198

[14] Grothendieck A., “Torsion homologique et sections rationnelles”, Secrétariat Mathématique, 3 (1958), 1–29

[15] Guo N., The Grothendieck–Serre conjecture over semilocal Dedekind rings, 2019, arXiv: 1902.02315

[16] Lam T. Yu., Lectures on modules and rings, Grad. Texts in Math., 189, Springer-Verlag, New York, 1999

[17] Nisnevich Y. A., “Espaces homogènes principaux rationnellement triviaux et arithmétique des schémas en groupes réductifs sur les anneaux de Dedekind”, C. R. Acad. Sci. Paris Sér. I Math., 299:1 (1984), 5–8

[18] Panin I. A., Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, 2017, arXiv: 1707.01767

[19] Panin I., “Purity for multipliers”, Algebra and number theory, Hindustan Book Agency, Delhi, 2005, 66–89

[20] Reiner I., Maximal orders, London Math. Soc. Monogr. New Ser., 28, Clarendon Press, Oxford Univ. Press, Oxford, 2003

[21] Serre J.-P., “Espaces fibrés algébriques”, Secrétariat Mathématique, 3 (1958), 1–37