Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_3_a9, author = {D. Pauly and S. Repin}, title = {A posteriori estimates for the stationary {Stokes} problem in exterior domains}, journal = {Algebra i analiz}, pages = {184--215}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a9/} }
D. Pauly; S. Repin. A posteriori estimates for the stationary Stokes problem in exterior domains. Algebra i analiz, Tome 31 (2019) no. 3, pp. 184-215. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a9/
[1] Babuška I., Aziz A. K., Survey lectures on the mathematical foundations of the finite element method, Acad. Press, New York, 1972
[2] Bauer S., Pauly D., Schomburg M., “The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions”, SIAM J. Math. Anal., 48:4 (2016), 2912–2943
[3] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. Rouge, 8:R-2 (1974), 129–151
[4] Cochez-Dhondt S., Nicaise S., Repin S., “A posteriori error estimates for finite volume approximations”, Math. Model. Nat. Phenom., 4:1 (2009), 106–122
[5] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Methods Appl. Sci., 12:4 (1990), 365–368
[6] Costabel M., Dauge M., On the inequalities of Babuskä–Aziz, Friedrichs and Horgan–Payne, 2013, arXiv: 1303.6141v1
[7] Fuchs M., Repin S., “Estimates of the deviations from the exact solutions for variational inequalities describing the stationary flow of certain viscous incompressible fluids”, Math. Methods Appl. Sci., 33:9 (2010), 1136–1147
[8] Galdi G., An introduction to the mathematical theory of the Navier–Stokes equations, v. 1, Springer Tracts Natur. Philos., 38, Springer, New York, 1994
[9] Girault V., Sequeira A., “A well-posed problem for the exterior Stokes equations in two and three dimensions”, Arch. Rational Mech. Anal., 114:4 (1991), 313–333
[10] Horgan C., Payne L., “On inequalities of Korn, Friedrichs and Babuskä–Aziz”, Arch. Ration. Mech. Anal., 82:2 (1983), 165–179
[11] Kessler M., Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Strömungsproblemen, Dissertat. Doktorgrades, Bayerischen Julius-Maximilians-Universität, Würzburg, 2000
[12] Kuhn P., Pauly D., “Regularity results for generalized electro-magnetic problems”, Analysis (Munich), 30:3 (2010), 225–252
[13] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961
[14] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave-Stoksa”, Zap. nauch. semin. LOMI, 59, 1976, 81–116
[15] Lazarov R., Repin S., Tomar S., “Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems”, Numer. Methods Partial Differential Equations, 25:4 (2009), 952–971
[16] Leis R., Initial boundary value problems in mathematical physics, Teubner, Stuttgart, 1986
[17] Mali O., Neittaanmäki P., Repin S., Accuracy verification methods. Theory and algorithms, Computat. Methods Appl. Sci., 32, Springer, Dordrecht, 2014
[18] Mikhaylov A., Repin S., “Estimates of deviations from exact solution of the Stokes problem in the vorticity-velocity-pressure formulation”, Zap. nauch. semin. POMI, 397, 2011, 73–88
[19] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, GITTL, M., 1957
[20] Mikhlin S. G., Constants in some inequalities of analysis, John Wiley Sons, Ltd., Chichester, 1986
[21] Nazarov S., Pilecka K., “On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain”, J. Math. Kyoto Univ., 40:3 (2000), 475–492
[22] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967
[23] Neittaanmäki P., Repin S., Reliable methods for computer simulation. Error control and a posteriori estimates, Stud. Math. Appl., 33, Elsevier, Amsterdam, 2004
[24] Neittaanmäki P., Repin S., “A posteriori error majorants for approximations of the evolutionary Stokes problem”, J. Numer. Math., 18:2 (2010), 119–134
[25] Olshanskii M. A., Chizhonkov E. V., “O nailuchshei konstante v inf-sup-uslovii dlya vytyanutykh pryamougolnykh oblastei”, Mat. zametki, 67:3 (2000), 387–396
[26] Pauly D., “Generalized electro-magneto statics in nonsmooth exterior domains”, Analysis (Munich), 27:4 (2007), 425–464
[27] Pauly D., Repin S., “Functional a posteriori error estimates for elliptic problems in exterior domains”, J. Math. Sci. (N.Y.), 162:3 (2009), 393–406
[28] Pauly D., Repin S., The Stationary Stokes Problem in Exterior Domains: Estimates of the Distance to Solenoidal Fields and Functional A Posteriori Error Estimates, 2018, arXiv: 1810.12555
[29] Payne L. E., “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov”, IMA J. Appl. Math., 72:5 (2007), 63–569
[30] Picard R., “Zur Theorie der harmonischen Differentialformen”, Manuscripta Math., 1:1 (1979), 31–45
[31] Picard R., “Randwertaufgaben der verallgemeinerten Potentialtheorie”, Math. Methods Appl. Sci., 3:2 (1981), 218–228
[32] Picard R., “On the boundary value problems of electro- and magnetostatics”, Proc. Roy. Soc. Edinburgh Sect. A, 92:1–2 (1982), 165–174
[33] Prager W., Synge J. L., “Approximation in elasticity based on the concept of function space”, Quart. Appl. Math., 5 (1947), 241–269
[34] Repin S., “A posteriori estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500
[35] Repin S., “A posteriori estimates for the Stokes problem”, J. Math. Sci. (New York), 109 (2002), 1950–1964
[36] Repin S., “Otsenki otkloneniya ot tochnykh reshenii nekotorykh kraevykh zadach s usloviem neszhimaemosti”, Algebra i analiz, 16 (2004), 124–161
[37] Repin S., A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math., 4, Walter de Gruyter, Berlin, 2008
[38] Repin S., “Estimates of the distance to the set of divergence free fields”, Zap. nauch. semin. POMI, 425, 2014, 99–116
[39] Repin S., “Estimates of the distance to the set of solenoidal vector fields and applications to a posteriori error control”, Comput. Methods Appl. Math., 15:4 (2015), 515–530
[40] Repin S., “Localized forms of the LBB condition and a posteriori estimates for incompressible media problems”, Math. Comput. Simulation, 145 (2018), 156–170
[41] Repin S., Stenberg R., “A posteriori estimates for a generalized Stokes problem”, Zap. nauch. semin. POMI, 362, 2008, 272–302 ; 367
[42] Repin S., Sysala S., Haslinger J., “Computable majorants of the limit load in Henckys plasticity problems”, Comput. Math. Appl., 75 (2018), 199–217
[43] Saranen J., Witsch K.-J., “Exterior boundary value problems for elliptic equations”, Ann. Acad. Sci. Fenn. Ser.Math., 8:1 (1983), 3–42
[44] Stoyan G., “Towards discrete Velte decompositions and narrow bounds for inf-sup constants”, Comput. Math. Appl., 38:7–8 (1999), 243–261
[45] Tomar S., Repin S., “Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems”, J. Comput. Appl. Math., 226:2 (2009), 358–369
[46] Verfürth R., “A posteriori error estimators for the Stokes equations”, Numer. Math., 55:3 (1989), 309–326
[47] Verfürth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, Stuttgart, 1996
[48] Weyl H., “The method of orthogonal projections in potential theory”, Duke. Math. J., 7 (1940), 411–444