A posteriori estimates for the stationary Stokes problem in exterior domains
Algebra i analiz, Tome 31 (2019) no. 3, pp. 184-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the analysis of the inf-sup condition arising in the stationary Stokes problem in exterior domains and applications to the derivation of computable bounds for the distance between the exact solution of the exterior Stokes problem and a certain approximation (which may be of a rather general form). In the first part, guaranteed bounds are deduced for the constant in the stability lemma associated with the exterior domain. These bounds depend only on known constants and the stability constant related to bounded domains that arise after suitable truncations of the unbounded domains. The lemma in question implies computable estimates of the distance to the set of divergence free fields defined in exterior domains. Such estimates are crucial for the derivation of computable majorants of the difference between the exact solution of the Stokes problem in exterior domains and an approximation from the admissible (energy) class of functions satisfying the Dirichlet boundary condition but not necessarily divergence free (solenoidal). Estimates of this type are often called a posteriori estimates of functional type. The constant in the stability lemma (or equivalently in the inf-sup or LBB condition) serves as a penalty factor at the term that controls violations of the divergence free condition. In the last part of the paper, similar estimates are deduced for the distance to the exact solution for nonconforming approximations, i.e., for those that may violate some continuity and boundary conditions. The case where the dimension of the domain equals  $ 2$ requires a special consideration because the corresponding weighted spaces differ from those natural for the dimension  $ 3$ (or larger). This special case is briefly discussed at the end of the paper where similar estimates are deduced for the distance to the exact solution of the exterior Stokes problem.
Keywords: stationary Stokes problem, exterior domains, inf-sup condition, a posteriori estimates.
@article{AA_2019_31_3_a9,
     author = {D. Pauly and S. Repin},
     title = {A posteriori estimates for the stationary {Stokes} problem in exterior domains},
     journal = {Algebra i analiz},
     pages = {184--215},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a9/}
}
TY  - JOUR
AU  - D. Pauly
AU  - S. Repin
TI  - A posteriori estimates for the stationary Stokes problem in exterior domains
JO  - Algebra i analiz
PY  - 2019
SP  - 184
EP  - 215
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a9/
LA  - en
ID  - AA_2019_31_3_a9
ER  - 
%0 Journal Article
%A D. Pauly
%A S. Repin
%T A posteriori estimates for the stationary Stokes problem in exterior domains
%J Algebra i analiz
%D 2019
%P 184-215
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a9/
%G en
%F AA_2019_31_3_a9
D. Pauly; S. Repin. A posteriori estimates for the stationary Stokes problem in exterior domains. Algebra i analiz, Tome 31 (2019) no. 3, pp. 184-215. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a9/

[1] Babuška I., Aziz A. K., Survey lectures on the mathematical foundations of the finite element method, Acad. Press, New York, 1972

[2] Bauer S., Pauly D., Schomburg M., “The Maxwell compactness property in bounded weak Lipschitz domains with mixed boundary conditions”, SIAM J. Math. Anal., 48:4 (2016), 2912–2943

[3] Brezzi F., “On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers”, Rev. Francaise Automat. Informat. Recherche Operationnelle Ser. Rouge, 8:R-2 (1974), 129–151

[4] Cochez-Dhondt S., Nicaise S., Repin S., “A posteriori error estimates for finite volume approximations”, Math. Model. Nat. Phenom., 4:1 (2009), 106–122

[5] Costabel M., “A remark on the regularity of solutions of Maxwell's equations on Lipschitz domains”, Math. Methods Appl. Sci., 12:4 (1990), 365–368

[6] Costabel M., Dauge M., On the inequalities of Babuskä–Aziz, Friedrichs and Horgan–Payne, 2013, arXiv: 1303.6141v1

[7] Fuchs M., Repin S., “Estimates of the deviations from the exact solutions for variational inequalities describing the stationary flow of certain viscous incompressible fluids”, Math. Methods Appl. Sci., 33:9 (2010), 1136–1147

[8] Galdi G., An introduction to the mathematical theory of the Navier–Stokes equations, v. 1, Springer Tracts Natur. Philos., 38, Springer, New York, 1994

[9] Girault V., Sequeira A., “A well-posed problem for the exterior Stokes equations in two and three dimensions”, Arch. Rational Mech. Anal., 114:4 (1991), 313–333

[10] Horgan C., Payne L., “On inequalities of Korn, Friedrichs and Babuskä–Aziz”, Arch. Ration. Mech. Anal., 82:2 (1983), 165–179

[11] Kessler M., Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Strömungsproblemen, Dissertat. Doktorgrades, Bayerischen Julius-Maximilians-Universität, Würzburg, 2000

[12] Kuhn P., Pauly D., “Regularity results for generalized electro-magnetic problems”, Analysis (Munich), 30:3 (2010), 225–252

[13] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961

[14] Ladyzhenskaya O. A., Solonnikov V. A., “O nekotorykh zadachakh vektornogo analiza i obobschennykh postanovkakh kraevykh zadach dlya uravnenii Nave-Stoksa”, Zap. nauch. semin. LOMI, 59, 1976, 81–116

[15] Lazarov R., Repin S., Tomar S., “Functional a posteriori error estimates for discontinuous Galerkin approximations of elliptic problems”, Numer. Methods Partial Differential Equations, 25:4 (2009), 952–971

[16] Leis R., Initial boundary value problems in mathematical physics, Teubner, Stuttgart, 1986

[17] Mali O., Neittaanmäki P., Repin S., Accuracy verification methods. Theory and algorithms, Computat. Methods Appl. Sci., 32, Springer, Dordrecht, 2014

[18] Mikhaylov A., Repin S., “Estimates of deviations from exact solution of the Stokes problem in the vorticity-velocity-pressure formulation”, Zap. nauch. semin. POMI, 397, 2011, 73–88

[19] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, GITTL, M., 1957

[20] Mikhlin S. G., Constants in some inequalities of analysis, John Wiley Sons, Ltd., Chichester, 1986

[21] Nazarov S., Pilecka K., “On steady Stokes and Navier–Stokes problems with zero velocity at infinity in a three-dimensional exterior domain”, J. Math. Kyoto Univ., 40:3 (2000), 475–492

[22] Nečas J., Les méthodes directes en théorie des équations elliptiques, Masson et Cie, Paris; Academia, Prague, 1967

[23] Neittaanmäki P., Repin S., Reliable methods for computer simulation. Error control and a posteriori estimates, Stud. Math. Appl., 33, Elsevier, Amsterdam, 2004

[24] Neittaanmäki P., Repin S., “A posteriori error majorants for approximations of the evolutionary Stokes problem”, J. Numer. Math., 18:2 (2010), 119–134

[25] Olshanskii M. A., Chizhonkov E. V., “O nailuchshei konstante v inf-sup-uslovii dlya vytyanutykh pryamougolnykh oblastei”, Mat. zametki, 67:3 (2000), 387–396

[26] Pauly D., “Generalized electro-magneto statics in nonsmooth exterior domains”, Analysis (Munich), 27:4 (2007), 425–464

[27] Pauly D., Repin S., “Functional a posteriori error estimates for elliptic problems in exterior domains”, J. Math. Sci. (N.Y.), 162:3 (2009), 393–406

[28] Pauly D., Repin S., The Stationary Stokes Problem in Exterior Domains: Estimates of the Distance to Solenoidal Fields and Functional A Posteriori Error Estimates, 2018, arXiv: 1810.12555

[29] Payne L. E., “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov”, IMA J. Appl. Math., 72:5 (2007), 63–569

[30] Picard R., “Zur Theorie der harmonischen Differentialformen”, Manuscripta Math., 1:1 (1979), 31–45

[31] Picard R., “Randwertaufgaben der verallgemeinerten Potentialtheorie”, Math. Methods Appl. Sci., 3:2 (1981), 218–228

[32] Picard R., “On the boundary value problems of electro- and magnetostatics”, Proc. Roy. Soc. Edinburgh Sect. A, 92:1–2 (1982), 165–174

[33] Prager W., Synge J. L., “Approximation in elasticity based on the concept of function space”, Quart. Appl. Math., 5 (1947), 241–269

[34] Repin S., “A posteriori estimation for variational problems with uniformly convex functionals”, Math. Comput., 69:230 (2000), 481–500

[35] Repin S., “A posteriori estimates for the Stokes problem”, J. Math. Sci. (New York), 109 (2002), 1950–1964

[36] Repin S., “Otsenki otkloneniya ot tochnykh reshenii nekotorykh kraevykh zadach s usloviem neszhimaemosti”, Algebra i analiz, 16 (2004), 124–161

[37] Repin S., A Posteriori Estimates for Partial Differential Equations, Radon Ser. Comput. Appl. Math., 4, Walter de Gruyter, Berlin, 2008

[38] Repin S., “Estimates of the distance to the set of divergence free fields”, Zap. nauch. semin. POMI, 425, 2014, 99–116

[39] Repin S., “Estimates of the distance to the set of solenoidal vector fields and applications to a posteriori error control”, Comput. Methods Appl. Math., 15:4 (2015), 515–530

[40] Repin S., “Localized forms of the LBB condition and a posteriori estimates for incompressible media problems”, Math. Comput. Simulation, 145 (2018), 156–170

[41] Repin S., Stenberg R., “A posteriori estimates for a generalized Stokes problem”, Zap. nauch. semin. POMI, 362, 2008, 272–302 ; 367

[42] Repin S., Sysala S., Haslinger J., “Computable majorants of the limit load in Henckys plasticity problems”, Comput. Math. Appl., 75 (2018), 199–217

[43] Saranen J., Witsch K.-J., “Exterior boundary value problems for elliptic equations”, Ann. Acad. Sci. Fenn. Ser.Math., 8:1 (1983), 3–42

[44] Stoyan G., “Towards discrete Velte decompositions and narrow bounds for inf-sup constants”, Comput. Math. Appl., 38:7–8 (1999), 243–261

[45] Tomar S., Repin S., “Efficient computable error bounds for discontinuous Galerkin approximations of elliptic problems”, J. Comput. Appl. Math., 226:2 (2009), 358–369

[46] Verfürth R., “A posteriori error estimators for the Stokes equations”, Numer. Math., 55:3 (1989), 309–326

[47] Verfürth R., A review of a posteriori error estimation and adaptive mesh-refinement techniques, Wiley-Teubner, Stuttgart, 1996

[48] Weyl H., “The method of orthogonal projections in potential theory”, Duke. Math. J., 7 (1940), 411–444