The floating-body problem: an integro-differential equation without irregular frequencies
Algebra i analiz, Tome 31 (2019) no. 3, pp. 170-183.

Voir la notice de l'article provenant de la source Math-Net.Ru

The linear boundary value problem under consideration describes time-harmonic motion of water in a horizontal three-dimensional layer of constant depth in the presence of an obstacle adjacent to the upper side of the layer (floating body). This problem for a complex-valued harmonic function involves mixed boundary conditions and a radiation condition at infinity. Under rather general geometric assumptions the existence of a unique solution is proved for all values of the problem's nonnegative parameter related to the frequency of oscillations. The proof is based on the representation of a solution as a sum of simple- and double-layer potentials with densities distributed over the obstacle's surface, thus reducing the problem to an indefinite integro-differential equation. The latter is shown to be soluble for all continuous right-hand side terms, for which purpose S. G. Krein's theorem about indefinite equations is used.
Keywords: potential representations, integral operators, integro-differential equation.
@article{AA_2019_31_3_a8,
     author = {N. Kuznetsov},
     title = {The floating-body problem: an integro-differential equation without irregular frequencies},
     journal = {Algebra i analiz},
     pages = {170--183},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a8/}
}
TY  - JOUR
AU  - N. Kuznetsov
TI  - The floating-body problem: an integro-differential equation without irregular frequencies
JO  - Algebra i analiz
PY  - 2019
SP  - 170
EP  - 183
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a8/
LA  - en
ID  - AA_2019_31_3_a8
ER  - 
%0 Journal Article
%A N. Kuznetsov
%T The floating-body problem: an integro-differential equation without irregular frequencies
%J Algebra i analiz
%D 2019
%P 170-183
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a8/
%G en
%F AA_2019_31_3_a8
N. Kuznetsov. The floating-body problem: an integro-differential equation without irregular frequencies. Algebra i analiz, Tome 31 (2019) no. 3, pp. 170-183. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a8/

[1] Colton D., Kress R., Integral equation methods in scattering theory, Classic Appl. Math., 72, SIAM, Philadelphia, PA, 2013

[2] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer, Berlin, 1983

[3] Gyunter N. M., Teoriya potentsiala i ee primenenie k osnovnym zadacham matematicheskoi fiziki, GITTL, M., 1953

[4] John F., “On the motion of floating bodies. II”, Comm. Pure Appl. Math., 3 (1950), 45–101

[5] Kleinman R. E., On the mathematical theory of motion of floating bodies – an update, Report 82/074, D. W. Taylor Naval Ship Res. Devel. Center, 1982

[6] Krein S. G., “Ob odnom neopredelennom uravnenii v gilbertovom prostranstve i ego primenenii v teorii potentsiala”, Uspekhi mat. nauk, 9:3 (1954), 149–153

[7] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967

[8] Kress R., Linear integral equations, Appl. Math. Sci., 82, Springer, New York, 2014

[9] Kuznetsov N. G., “Ustanovivshiesya volny na poverkhnosti zhidkosti peremennoi glubiny v prisutstvii plavayuschikh tel”, Regulyarnye asimptoticheskie algoritmy v mekhanike, Nauka, Novosibirsk, 1989, 200–261; 268–270

[10] Kuznetsov N. G., “Integralnye uravneniya dlya zadachi ob ustanovivshikhsya volnakh, vynuzhdaemykh plavayuschim telom”, Mat. zametki, 50:4 (1991), 75–83

[11] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves. A mathematical approach, Cambridge Univ. Press, Cambridge, 2002

[12] Liapounoff A. M., “Sur le potentiel de la double couche”, Comm. Soc. Math. Kharkow. Sér. 2, 6 (1899), 129–138

[13] Lukyanov V. V., Nazarov A. I., “Reshenie zadachi Venttselya dlya uravneniya Laplasa i Gelmgoltsa s pomoschyu povtornykh potentsialov”, Zap. nauch. semin. POMI, 250, 1998, 203–218

[14] McIver M., “An example of non-uniqueness in the two-dimensional linear water wave problem”, J. Fluid Mech., 315 (1996), 257–266

[15] McIver P., McIver M., “Trapped modes in an axisymmetric water wave problem”, Quart. J. Mech. Appl. Math., 50:2 (1997), 165–178

[16] Maz'ya V. G., Rossmann J., “Über die Asymptotic der Lösungen elliptischer Randwertaufgaben in der Umgebung von Kanten”, Math. Nachr., 138 (1988), 27–53

[17] Mikhlin S. G., Kurs matematicheskoi fiziki, Nauka, M., 1968

[18] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, v. 2, Ros. gos. akad. tip., Petrograd, 1923

[19] Ursell F., “Irregular frequencies and the motion of floating bodies”, J. Fluid Mech., 105 (1981), 143–156

[20] Verchota G., “Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains”, J. Funct. Anal., 59:3 (1984), 572–611