Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_3_a7, author = {N. V. Krylov}, title = {Weighted {Aleksandrov} estimates: {PDE} and stochastic versions}, journal = {Algebra i analiz}, pages = {154--169}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a7/} }
N. V. Krylov. Weighted Aleksandrov estimates: PDE and stochastic versions. Algebra i analiz, Tome 31 (2019) no. 3, pp. 154-169. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a7/
[1] Aleksandrov A. D., “Nekotorye otsenki reshenii zadachi Dirikhle”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1967, no. 7, 19–29
[2] Apushkinskaya D. E., Nazarov A. I., “Ellipticheskaya zadacha Dirikhle v vesovykh prostranstvakh”, Zap. nauch. semin. POMI, 288, 2002, 14–33
[3] Hongjie Dong, Krylov N. V., Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces, arXiv: 1806.00077
[4] Guan Pengfei, Trudinger N. S., Xu-Jia Wang, “On the Dirichlet problem for degenerate Monge–Ampère equations”, Acta Math., 182:1 (1999), 87–104
[5] Krylov N. V., “Ob odnoi otsenke iz teorii stokhasticheskikh integralov”, Teor. veroyatn. i ee prim., 16:3 (1971), 446–457
[6] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977
[7] Krylov N. V., “Ob upravlenii diffuzionnym protsessom do momenta pervogo vykhoda iz oblasti”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 1029–1048
[8] Krylov N. V., “On a representation of fully nonlinear elliptic operators in terms of pure second order derivatives and its applications”, Probl. mat. anal., 59 (2011), 3–24
[9] Krylov N. V., Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations, Math. Surveys Monogr., 233, Amer. Math. Soc., Providence, RI, 2018
[10] Nazarov A. I., “Otsenki maksimuma reshenii ellipticheskikh i parabolicheskikh uravnenii cherez vesovye normy pravoi chasti”, Algebra i analiz, 13:2 (2001), 151–164
[11] Nazarov A. I., “Printsip maksimuma A. D. Aleksandrova”, Sovrem. probl. mat. i ee pril., 29 (2005), 127–143
[12] Winter N., “$W^{2,p}$ and $W^{1,p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations”, Z. Anal. Anwend., 28:2 (2009), 129–164