Weighted Aleksandrov estimates: PDE and stochastic versions
Algebra i analiz, Tome 31 (2019) no. 3, pp. 154-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

Several pointwise estimates are proved for solutions of linear elliptic equations with measurable coefficients in smooth domains through the weighted $ L_d$-norm of the free term. The weights allow the free term to blow up near the boundary. Weighted estimates for occupation times of diffusion processes are also presented.
Keywords: weights, Aleksandrov estimates, elliptic equations.
@article{AA_2019_31_3_a7,
     author = {N. V. Krylov},
     title = {Weighted {Aleksandrov} estimates: {PDE} and stochastic versions},
     journal = {Algebra i analiz},
     pages = {154--169},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a7/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - Weighted Aleksandrov estimates: PDE and stochastic versions
JO  - Algebra i analiz
PY  - 2019
SP  - 154
EP  - 169
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a7/
LA  - en
ID  - AA_2019_31_3_a7
ER  - 
%0 Journal Article
%A N. V. Krylov
%T Weighted Aleksandrov estimates: PDE and stochastic versions
%J Algebra i analiz
%D 2019
%P 154-169
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a7/
%G en
%F AA_2019_31_3_a7
N. V. Krylov. Weighted Aleksandrov estimates: PDE and stochastic versions. Algebra i analiz, Tome 31 (2019) no. 3, pp. 154-169. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a7/

[1] Aleksandrov A. D., “Nekotorye otsenki reshenii zadachi Dirikhle”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1967, no. 7, 19–29

[2] Apushkinskaya D. E., Nazarov A. I., “Ellipticheskaya zadacha Dirikhle v vesovykh prostranstvakh”, Zap. nauch. semin. POMI, 288, 2002, 14–33

[3] Hongjie Dong, Krylov N. V., Fully nonlinear elliptic and parabolic equations in weighted and mixed-norm Sobolev spaces, arXiv: 1806.00077

[4] Guan Pengfei, Trudinger N. S., Xu-Jia Wang, “On the Dirichlet problem for degenerate Monge–Ampère equations”, Acta Math., 182:1 (1999), 87–104

[5] Krylov N. V., “Ob odnoi otsenke iz teorii stokhasticheskikh integralov”, Teor. veroyatn. i ee prim., 16:3 (1971), 446–457

[6] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977

[7] Krylov N. V., “Ob upravlenii diffuzionnym protsessom do momenta pervogo vykhoda iz oblasti”, Izv. AN SSSR. Ser. mat., 45:5 (1981), 1029–1048

[8] Krylov N. V., “On a representation of fully nonlinear elliptic operators in terms of pure second order derivatives and its applications”, Probl. mat. anal., 59 (2011), 3–24

[9] Krylov N. V., Sobolev and viscosity solutions for fully nonlinear elliptic and parabolic equations, Math. Surveys Monogr., 233, Amer. Math. Soc., Providence, RI, 2018

[10] Nazarov A. I., “Otsenki maksimuma reshenii ellipticheskikh i parabolicheskikh uravnenii cherez vesovye normy pravoi chasti”, Algebra i analiz, 13:2 (2001), 151–164

[11] Nazarov A. I., “Printsip maksimuma A. D. Aleksandrova”, Sovrem. probl. mat. i ee pril., 29 (2005), 127–143

[12] Winter N., “$W^{2,p}$ and $W^{1,p}$-estimates at the boundary for solutions of fully nonlinear, uniformly elliptic equations”, Z. Anal. Anwend., 28:2 (2009), 129–164