Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_3_a3, author = {Yu. K. Demyanovich}, title = {Embedding of spaces and wavelet decomposition}, journal = {Algebra i analiz}, pages = {55--81}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a3/} }
Yu. K. Demyanovich. Embedding of spaces and wavelet decomposition. Algebra i analiz, Tome 31 (2019) no. 3, pp. 55-81. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a3/
[1] Daubechies I., Ten lectures on wavelts, CBMS-NSF Reg. Conf. Ser. Appl. Math., 61, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA, 1992
[2] Chui K., Vvedenie v veivlety, Mir, M., 2001
[3] Daubechies I., Guskov I., Sweldens W., “Commutation for irregular subdivision”, Const. Approx., 17:4 (2001), 479–514
[4] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005
[5] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005
[6] Schoenberg I. J., “Contribution to the problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99; 112–141
[7] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976
[8] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980
[9] Courant R., “Variational methods for the solution of problems of equilibrium and vibrations”, Bull. Amer. Math. Soc., 49 (1943), 1–23
[10] Mikhlin S. G., Problema minimuma kvadratichnogo funktsionala, GTTL, M., 1952
[11] Demyanovich Yu. K., “Ustoichivost metoda setok dlya ellipticheskikh zadach”, Dokl. AN SSSR, 164:1 (1965), 20–23
[12] Mikhlin S. G., Chislennaya realizatsiya variatsinnykh metodov, Nauka, M., 1966
[13] Strang G., Fix G., “Fourier analysis of the finite element method in Ritz–Galerkin Theory”, Stud. Appl. Math., 48:3 (1969), 265–273
[14] Michlin S. G., Approximation auf dem Kubischen Gitter, Mathematishe Reihe, 59, Birkhauser Verlag, Basel, 1976
[15] Mikhlin S. G., “O koordinatnykh funktsiyakh variatsionno-raznostnogo metoda”, Dokl. AN SSSR, 200:3 (1971), 526–529
[16] Demyanovich Yu. K., Mikhlin S. G., “O setochnoi approksimatsii funktsii sobolevskikh klassov”, Zap. nauch. semin. LOMI, 35, 1973, 6–11
[17] Mikhlin S. G., “Variatsionno-setochnaya approksimatsiya”, Zap. nauch. semin. LOMI, 48, 1974, 32–186
[18] Michlin S. G., Konstanten in einige Ungleichungen der Analysis, Teubner Texts in Math., 35, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1981
[19] Demyanovich Yu. K., Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, Izd-vo SPbGU, SPb., 1994
[20] Dai K. Y., Liu G. R., “Free and forced vibration analysis using the smoothed finite element method (SFEM)”, J. Sound Vibrat., 301 (2007), 803–820
[21] Liu G. R., Zhang G. R., “Edge-based smoothed point interpolation methods”, Int. J. Comput. Methods, 5:4 (2008), 621–646
[22] Liu G. R., Nguyen-Thoi T., Lam K. Y.,, “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses in solids”, J. Sound Vibrat., 320 (2009), 1100–1130
[23] Zhang Z. Q., Liu G. R., “Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods”, Internat. J. Numer. Methods Engrg., 84:2 (2010), 149–178
[24] Nguyen-Thoi T., Liu G. R., Nguyen-Xuan H., et al., “Adaptive analysis using the node-based smoothed finite element method (NS-FEM)”, Int. J. Numer. Methods Biomed. Engrg., 27:2 (2011), 198–218
[25] Demyanovich Yu. K., Teoriya splain-vspleskov, SPbGU, SPb., 2013
[26] Demyanovich Yu. K., Romanovskii L. M., “Splain-vspleskovoe ukrupnenie approksimatsii kurantova tipa”, Zap. nauch. semin. POMI, 419, 2013, 77–110
[27] Jiang C., Zhang Z. Q., Liu G. R., Han X., Zeng W., “An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues”, Eng. Anal. Bound. Elem., 59 (2015), 62–77
[28] Demyanovich Yu. K., “Ortogonalnyi bazis vspleskovykh potokov”, Probl. mat. anal., 83 (2015), 65–81
[29] Demyanovich Yu. K., Gerasimov I. V., “O lokalnykh ukrupneniyakh simplitsialnykh podrazdelenii”, Probl. mat. anal., 84 (2016), 67–82
[30] Zeng W., Liu G. R., “Smoothed finite element methods (S-FEM) An overview and recent developments. Archives of Computational”, Methods in Engineering, 2016 | DOI
[31] Demyanovich Yu. K., Kovtunenko E. S., Safonova T. A., “Suschestvovanie i edinstvennost prostranstv splainov maksimalnoi psevdogladkosti”, Probl. mat. anal., 88 (2017), 38–51
[32] Dem'yanovich Yu. K., “On embedding and extended smoothness of spline spaces”, Far East J. Math. Sci. (FJMS), 102 (2017), 2025–2052
[33] Demyanovich Yu. K., “Splain-veivletnye razlozheniya na mnogoobrazii”, Probl. mat. anal., 36 (2007), 15–22
[34] Burova I. G., Demyanovich Yu. K., Evdokimova T. O., Splain-vspeski i ikh realizatsiya, SPbGU, SPb., 2017
[35] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya $B$-splainov na neravnomernoi setke”, Mat. model., 13:9 (2001), 98–100
[36] Demyanovich Yu. K., Ivantsova O. N., Ponomareva A. Yu., “Tselochislennaya realizatsiya splain-vspleskovogo razlozheniya”, Probl. mat. anal., 90 (2017), 35–48
[37] Demyanovich Yu. K., Kosogorov O. M., “Splainy i biortogonalnye sistemy”, Zap. nauch. semin. POMI, 367, 2009, 9–26
[38] Stechkin S. V., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976
[39] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980
[40] Demyanovich Yu. K., Zimin A. V., “O vspleskovom razlozhenii splainov ermitova tipa”, Probl. mat. anal., 35 (2007), 33–45
[41] Demyanovich Yu. K., “Minimalnye splainy lagranzheva tipa”, Probl. mat. anal., 50 (2010), 89–100
[42] Demyanovich Yu. K., “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Dokl. RAN, 401:4 (2005), 1–4
[43] Demyanovich Yu. K., Zimin A. V., “Approksimatsii kurantova tipa i ikh veivletnye razlozheniya”, Probl. mat. anal., 37 (2008), 3–22
[44] Demyanovich Yu. K., “Vspleskovye razlozheniya v prostranstvakh splainov na neravnomernoi setke”, Dokl. RAN, 382:3 (2002), 313–316
[45] Demyanovich Yu. K., Beliakova O. V., Le Thi Ni Bich, “Generalized smoothness of Hermite type splines”, WSEAS Transact. Math., 17 (2018), 44, 359–368
[46] Demyanovich Yu. K., “Spline approximations on manifolds”, Int. J. Wavelets Multiresolut. Inf. Process., 4:3 (2006), 383–403
[47] Demyanovich Yu. K., “Veivlety na mnogoobrazii”, Dokl. RAN, 421:2 (2009), 1–5
[48] Demyanovich Yu. K., Prozorova E. V., “Gladkost prostranstv v metode konechnykh elementov”, Probl. mat. anal., 95 (2018), 19–29
[49] Demyanovich Yu. K., “Vlozhennost prostranstv i veivlety na mnogoobrazii”, Zap. nauch. semin. POMI, 382, 2010, 15–37
[50] Demyanovich Yu. K., “Vspleskovoe razlozhenie dlya funktsii na differentsiruemom mnogoobrazii”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2008, no. 4, 7–15
[51] Demyanovich Yu. K., Zimin A. V., “Veivletnye razlozheniya na mnogoobrazii”, Zap. nauch. semin. POMI, 346, 2007, 26–38