Embedding of spaces and wavelet decomposition
Algebra i analiz, Tome 31 (2019) no. 3, pp. 55-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions of generalized smoothness (called pseudosmoothness) are found for coordinate functions of the finite element method (FEM). Embedding of FEM spaces on embedded subdivisions is discussed. Approximation relations on a differentiable manifold are considered. The concept of pseudosmoothness is formulated in terms of the coincidence of values for linear functionals on functions in question. The concept of maximum pseudosmoothness is introduced. Embedding criteria for spaces on embedded subdivisions are given. Wavelet expansion algorithms are developed for the spaces mentioned above.
Keywords: approximation relations, generalized smoothness, nesting of spaces, wavelet expansions, minimal splines, finite element method, functions on a manifold.
@article{AA_2019_31_3_a3,
     author = {Yu. K. Demyanovich},
     title = {Embedding of spaces and wavelet decomposition},
     journal = {Algebra i analiz},
     pages = {55--81},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a3/}
}
TY  - JOUR
AU  - Yu. K. Demyanovich
TI  - Embedding of spaces and wavelet decomposition
JO  - Algebra i analiz
PY  - 2019
SP  - 55
EP  - 81
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a3/
LA  - ru
ID  - AA_2019_31_3_a3
ER  - 
%0 Journal Article
%A Yu. K. Demyanovich
%T Embedding of spaces and wavelet decomposition
%J Algebra i analiz
%D 2019
%P 55-81
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a3/
%G ru
%F AA_2019_31_3_a3
Yu. K. Demyanovich. Embedding of spaces and wavelet decomposition. Algebra i analiz, Tome 31 (2019) no. 3, pp. 55-81. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a3/

[1] Daubechies I., Ten lectures on wavelts, CBMS-NSF Reg. Conf. Ser. Appl. Math., 61, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA, 1992

[2] Chui K., Vvedenie v veivlety, Mir, M., 2001

[3] Daubechies I., Guskov I., Sweldens W., “Commutation for irregular subdivision”, Const. Approx., 17:4 (2001), 479–514

[4] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[5] Novikov I. Ya., Protasov V. Yu., Skopina M. A., Teoriya vspleskov, Fizmatlit, M., 2005

[6] Schoenberg I. J., “Contribution to the problem of approximation of equidistant data by analytic functions”, Quart. Appl. Math., 4 (1946), 45–99; 112–141

[7] Stechkin S. B., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976

[8] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980

[9] Courant R., “Variational methods for the solution of problems of equilibrium and vibrations”, Bull. Amer. Math. Soc., 49 (1943), 1–23

[10] Mikhlin S. G., Problema minimuma kvadratichnogo funktsionala, GTTL, M., 1952

[11] Demyanovich Yu. K., “Ustoichivost metoda setok dlya ellipticheskikh zadach”, Dokl. AN SSSR, 164:1 (1965), 20–23

[12] Mikhlin S. G., Chislennaya realizatsiya variatsinnykh metodov, Nauka, M., 1966

[13] Strang G., Fix G., “Fourier analysis of the finite element method in Ritz–Galerkin Theory”, Stud. Appl. Math., 48:3 (1969), 265–273

[14] Michlin S. G., Approximation auf dem Kubischen Gitter, Mathematishe Reihe, 59, Birkhauser Verlag, Basel, 1976

[15] Mikhlin S. G., “O koordinatnykh funktsiyakh variatsionno-raznostnogo metoda”, Dokl. AN SSSR, 200:3 (1971), 526–529

[16] Demyanovich Yu. K., Mikhlin S. G., “O setochnoi approksimatsii funktsii sobolevskikh klassov”, Zap. nauch. semin. LOMI, 35, 1973, 6–11

[17] Mikhlin S. G., “Variatsionno-setochnaya approksimatsiya”, Zap. nauch. semin. LOMI, 48, 1974, 32–186

[18] Michlin S. G., Konstanten in einige Ungleichungen der Analysis, Teubner Texts in Math., 35, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1981

[19] Demyanovich Yu. K., Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, Izd-vo SPbGU, SPb., 1994

[20] Dai K. Y., Liu G. R., “Free and forced vibration analysis using the smoothed finite element method (SFEM)”, J. Sound Vibrat., 301 (2007), 803–820

[21] Liu G. R., Zhang G. R., “Edge-based smoothed point interpolation methods”, Int. J. Comput. Methods, 5:4 (2008), 621–646

[22] Liu G. R., Nguyen-Thoi T., Lam K. Y.,, “An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses in solids”, J. Sound Vibrat., 320 (2009), 1100–1130

[23] Zhang Z. Q., Liu G. R., “Upper and lower bounds for natural frequencies: a property of the smoothed finite element methods”, Internat. J. Numer. Methods Engrg., 84:2 (2010), 149–178

[24] Nguyen-Thoi T., Liu G. R., Nguyen-Xuan H., et al., “Adaptive analysis using the node-based smoothed finite element method (NS-FEM)”, Int. J. Numer. Methods Biomed. Engrg., 27:2 (2011), 198–218

[25] Demyanovich Yu. K., Teoriya splain-vspleskov, SPbGU, SPb., 2013

[26] Demyanovich Yu. K., Romanovskii L. M., “Splain-vspleskovoe ukrupnenie approksimatsii kurantova tipa”, Zap. nauch. semin. POMI, 419, 2013, 77–110

[27] Jiang C., Zhang Z. Q., Liu G. R., Han X., Zeng W., “An edge-based/node-based selective smoothed finite element method using tetrahedrons for cardiovascular tissues”, Eng. Anal. Bound. Elem., 59 (2015), 62–77

[28] Demyanovich Yu. K., “Ortogonalnyi bazis vspleskovykh potokov”, Probl. mat. anal., 83 (2015), 65–81

[29] Demyanovich Yu. K., Gerasimov I. V., “O lokalnykh ukrupneniyakh simplitsialnykh podrazdelenii”, Probl. mat. anal., 84 (2016), 67–82

[30] Zeng W., Liu G. R., “Smoothed finite element methods (S-FEM) An overview and recent developments. Archives of Computational”, Methods in Engineering, 2016 | DOI

[31] Demyanovich Yu. K., Kovtunenko E. S., Safonova T. A., “Suschestvovanie i edinstvennost prostranstv splainov maksimalnoi psevdogladkosti”, Probl. mat. anal., 88 (2017), 38–51

[32] Dem'yanovich Yu. K., “On embedding and extended smoothness of spline spaces”, Far East J. Math. Sci. (FJMS), 102 (2017), 2025–2052

[33] Demyanovich Yu. K., “Splain-veivletnye razlozheniya na mnogoobrazii”, Probl. mat. anal., 36 (2007), 15–22

[34] Burova I. G., Demyanovich Yu. K., Evdokimova T. O., Splain-vspeski i ikh realizatsiya, SPbGU, SPb., 2017

[35] Demyanovich Yu. K., “Kalibrovochnoe sootnoshenie dlya $B$-splainov na neravnomernoi setke”, Mat. model., 13:9 (2001), 98–100

[36] Demyanovich Yu. K., Ivantsova O. N., Ponomareva A. Yu., “Tselochislennaya realizatsiya splain-vspleskovogo razlozheniya”, Probl. mat. anal., 90 (2017), 35–48

[37] Demyanovich Yu. K., Kosogorov O. M., “Splainy i biortogonalnye sistemy”, Zap. nauch. semin. POMI, 367, 2009, 9–26

[38] Stechkin S. V., Subbotin Yu. N., Splainy v vychislitelnoi matematike, Nauka, M., 1976

[39] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980

[40] Demyanovich Yu. K., Zimin A. V., “O vspleskovom razlozhenii splainov ermitova tipa”, Probl. mat. anal., 35 (2007), 33–45

[41] Demyanovich Yu. K., “Minimalnye splainy lagranzheva tipa”, Probl. mat. anal., 50 (2010), 89–100

[42] Demyanovich Yu. K., “Gladkost prostranstv splainov i vspleskovye razlozheniya”, Dokl. RAN, 401:4 (2005), 1–4

[43] Demyanovich Yu. K., Zimin A. V., “Approksimatsii kurantova tipa i ikh veivletnye razlozheniya”, Probl. mat. anal., 37 (2008), 3–22

[44] Demyanovich Yu. K., “Vspleskovye razlozheniya v prostranstvakh splainov na neravnomernoi setke”, Dokl. RAN, 382:3 (2002), 313–316

[45] Demyanovich Yu. K., Beliakova O. V., Le Thi Ni Bich, “Generalized smoothness of Hermite type splines”, WSEAS Transact. Math., 17 (2018), 44, 359–368

[46] Demyanovich Yu. K., “Spline approximations on manifolds”, Int. J. Wavelets Multiresolut. Inf. Process., 4:3 (2006), 383–403

[47] Demyanovich Yu. K., “Veivlety na mnogoobrazii”, Dokl. RAN, 421:2 (2009), 1–5

[48] Demyanovich Yu. K., Prozorova E. V., “Gladkost prostranstv v metode konechnykh elementov”, Probl. mat. anal., 95 (2018), 19–29

[49] Demyanovich Yu. K., “Vlozhennost prostranstv i veivlety na mnogoobrazii”, Zap. nauch. semin. POMI, 382, 2010, 15–37

[50] Demyanovich Yu. K., “Vspleskovoe razlozhenie dlya funktsii na differentsiruemom mnogoobrazii”, Vestn. S.-Peterburg. un-ta. Ser. 1, 2008, no. 4, 7–15

[51] Demyanovich Yu. K., Zimin A. V., “Veivletnye razlozheniya na mnogoobrazii”, Zap. nauch. semin. POMI, 346, 2007, 26–38