On the defect of compactness in Sobolev embeddings on Riemannian manifolds
Algebra i analiz, Tome 31 (2019) no. 3, pp. 36-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

The defect of compactness for an embedding $ E\hookrightarrow F$ of two Banach spaces is the difference between a weakly convergent sequence in $ E$ and its weak limit, taken modulo terms vanishing in $ F$. We discuss the structure of the defect of compactness for (noncompact) Sobolev embeddings on manifolds, giving a brief outline of the theory based on isometry groups, followed by a summary of recent studies of the structure of bounded sequences without invariance assumptions.
Keywords: concentration compactness, profile decomposition, weak convergence, Sobolev spaces on manifolds.
@article{AA_2019_31_3_a2,
     author = {C. Tintarev},
     title = {On the defect of compactness in {Sobolev} embeddings on {Riemannian} manifolds},
     journal = {Algebra i analiz},
     pages = {36--54},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a2/}
}
TY  - JOUR
AU  - C. Tintarev
TI  - On the defect of compactness in Sobolev embeddings on Riemannian manifolds
JO  - Algebra i analiz
PY  - 2019
SP  - 36
EP  - 54
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a2/
LA  - en
ID  - AA_2019_31_3_a2
ER  - 
%0 Journal Article
%A C. Tintarev
%T On the defect of compactness in Sobolev embeddings on Riemannian manifolds
%J Algebra i analiz
%D 2019
%P 36-54
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a2/
%G en
%F AA_2019_31_3_a2
C. Tintarev. On the defect of compactness in Sobolev embeddings on Riemannian manifolds. Algebra i analiz, Tome 31 (2019) no. 3, pp. 36-54. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a2/

[1] Bahouri H., Cohen A., Koch H., “A general wavelet-based profile decomposition in the critical embedding of function spaces”, Confluences Math., 3:3 (2011), 387–411

[2] Adimurthi, Tintarev K., “On compactness in the Trudinger–Moser inequality”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1–18

[3] Bahouri H., Majdoub M., Masmoudi N.,, “Lack of compactness in the 2D critical Sobolev embedding, the general case”, J. Math. Pure Appl. (9), 101 (2014), 415–457

[4] Devillanova G., Tintarev C., A profile decomposition for the limiting Sobolev embedding, arXiv: 1812.04248

[5] Druet O., Hebey E., Robert F., Blow-up theory for elliptic PDEs in Riemannian geometry, Math. Notes, 45, Princeton Univ. Press, Princeton, 2004

[6] Fieseler K.-H., Tintarev K.,, “Semilinear elliptic problems and concentration compactness on non-compact Riemannian manifold”, J. Geom. Anal., 13:1 (2003), 67–75

[7] Gallier J., Quaintance J., Notes on Differential Geometry and Lie Groups, Book in progress, 2017 http://www.cis.upenn.edu/ ̃ jean/gbooks/manif.html

[8] Gallier J., Xu D., Siqueira M., “Parametric pseudo-manifolds”, Differential Geom. Appl., 3:6 (2012), 702–736

[9] Gérard P., “Description du def́aut de compacité de l'injection de Sobolev”, ESAIM Control Optim. Calc. Var., 3 (1998), 213–233

[10] Jaffard S., “Analysis of the lack of compactness in the critical Sobolev embeddings”, J. Funct. Anal., 161:2 (1999), 384–396

[11] Lieb E., “On the lowest eigenvalue of the Laplacian for the intersection of two domains”, Invent. Math., 74:3 (1983), 441–448

[12] Lions P. L., “The concentration-compactness principle in the calculus of variations. The locally compact case. I”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1:2 (1984), 109–145

[13] Lions P. L., “The concentration-compactness principle in the calculus of variations. The locally compact case. II”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 1:4 (1984), 223–283

[14] Lions P. L., “Solutions of Hartree–Fock equations for Coulomb systems”, Comm. Math. Phys., 109:1 (1987), 33–97

[15] Mariş M., Profile decomposition for sequences of Borel measures, arXiv: 1410.6125

[16] Sacks J., Uhlenbeck K., “The existence of minimal immersion in $2$-spheres”, Ann. of Math. (2), 113 (1981), 1–24

[17] Sandeep K., Tintarev C., Profile decomposition of Struwe–Solimini for manifolds with bounded geometry, arXiv: 1901.10427

[18] Schindler I., Tintarev K., “An abstract version of the concentration compactness principle”, Rev. Mat. Complut., 15 (2002), 417–436

[19] Schoen R., personal communication, Stanford, winter 2003

[20] Shubin M. A., “Spectral theory of elliptic operators on noncompact manifolds”, Méthodes semi-classiques (Nantes, 1991), v. 1, Astérisque, 207, 1992, 35–108

[21] Skrzypczak L., “Rotation invariant subspaces of Besov and Triebel–Lizorkin space: compactness of embeddings, smoothness and decay properties”, Rev. Mat. Iberoam., 18:2 (2002), 267–299

[22] Skrzypczak L., Tintarev C., “A geometric criterion for compactness of invariant subspaces”, Arch. Math. (Basel), 101:3 (2013), 259–268

[23] Skrzypczak L., Tintarev C., “Defect of compactness for Sobolev spaces on manifolds with bounded geometry”, Ann. Sc. Norm. Sup. Pisa (to appear)

[24] Solimini S., “A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 12:3 (1995), 319–337

[25] Solimini S., Tintarev C., “Concentration analysis in the Banach space”, Commun. Contemp. Math., 2016, no. 3, 1550038

[26] Strauss W., “Existence of solitary waves in Higher dimensions”, Comm. Math. Phys., 55 (1977), 149–162

[27] Struwe M., “A global compactness result for elliptic boundary value problems involving limiting nonlinearities”, Math. Z., 187:4 (1984), 511–517

[28] Tintarev K., Fieseler K.-H., Concentration compactness. Functional-analytic grounds and applications, Imperial College Press, London, 2007

[29] Tintarev C., Concentration Compactness: Functional-Analytic Theory of Concentration Phenomena, Walter DeGruyter Publ. (to appear)

[30] Willem M., Minimax theorems, Progr. Nonlin. Differential Equations Appl., 24, Birkhüser Boston, Inc., Boston, MA, 1996