Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms
Algebra i analiz, Tome 31 (2019) no. 3, pp. 216-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the existence problem for positive solutions $ {u \in L^{r}(\mathbb{R}^{n})}$, $ 0$, to the quasilinear elliptic equation $$ -\Delta _{p} u = \sigma u^{q} \text { in } \mathbb{R}^n $$ in the subnatural growth case $ 0$, where $ \Delta _{p}u = \mathrm {div}( \vert\nabla u\vert^{p-2} \nabla u )$ is the $ p$-Laplacian with $ 1$, and $ \sigma $ is a nonnegative measurable function (or measure) on $ \mathbb{R}^n$. The techniques rely on a study of general integral equations involving nonlinear potentials and related weighted norm inequalities. They are applicable to more general quasilinear elliptic operators in place of $ \Delta _{p}$ such as the $ \mathcal {A}$-Laplacian $ \mathrm {div} \mathcal {A}(x,\nabla u)$, or the fractional Laplacian $ (-\Delta )^{\alpha }$ on $ \mathbb{R}^n$, as well as linear uniformly elliptic operators with bounded measurable coefficients $ \mathrm {div} (\mathcal {A} \nabla u)$ on an arbitrary domain $ \Omega \subseteq \mathbb{R}^n$ with a positive Green function.
Keywords: quasilinear elliptic equation, measure data, $p$-Laplacian, fractional Laplacian, Wolff potential, Green function.
@article{AA_2019_31_3_a10,
     author = {A. Seesanea and I. E. Verbitsky},
     title = {Solutions in {Lebesgue} spaces to nonlinear elliptic equations with subnatural growth terms},
     journal = {Algebra i analiz},
     pages = {216--238},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a10/}
}
TY  - JOUR
AU  - A. Seesanea
AU  - I. E. Verbitsky
TI  - Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms
JO  - Algebra i analiz
PY  - 2019
SP  - 216
EP  - 238
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a10/
LA  - en
ID  - AA_2019_31_3_a10
ER  - 
%0 Journal Article
%A A. Seesanea
%A I. E. Verbitsky
%T Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms
%J Algebra i analiz
%D 2019
%P 216-238
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_3_a10/
%G en
%F AA_2019_31_3_a10
A. Seesanea; I. E. Verbitsky. Solutions in Lebesgue spaces to nonlinear elliptic equations with subnatural growth terms. Algebra i analiz, Tome 31 (2019) no. 3, pp. 216-238. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a10/

[1] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer, Berlin, 1996

[2] Ancona A., “Some results and examples about the behavior of harmonic functions and Green's functions with respect to second order elliptic operators”, Nagoya Math. J., 165 (2002), 123–158

[3] Boccardo L., Orsina L., “Sublinear equations in $L^s$”, Houston J. Math., 20:1 (1994), 99–114

[4] Brelot M., Lectures on potential theory, Tata Inst. Fundam. Res. Lectures Math., 19, Tata Inst., Bombay, 1960

[5] Brezis H., Kamin S., “Sublinear elliptic equations on $\mathbb{R}^n$”, Manuscripta Math., 74:1 (1992), 87–106

[6] Cao D. T., Verbitsky I. E., “Finite energy solutions of quasilinear elliptic equations with sub-natural growth terms”, Calc. Var. Partial Differential Equations, 52:3–4 (2015), 529–546

[7] Cao D. T., Verbitsky I. E., “Nonlinear elliptic equations and intrinsic potentials of Wolff type”, J. Funct. Anal., 272:1 (2017), 112–165

[8] Cao D. T, Verbitsky I. E., “Pointwise estimates of Brezis–Kamin type for solutions of sublinear elliptic equations”, Nonlinear Anal., 146 (2016), 1–19

[9] Cascante C., Ortega J. M., Verbitsky I. E., “On $L^p$–$L^q$ trace inequalities”, J. London Math. Soc. (2), 74:2 (2006), 497–511

[10] Grigor'yan A., Hansen W., “Lower estimates for a perturbed Green function”, J. Anal. Math., 104 (2008), 25–58

[11] Grigor'yan A., Verbitsky I. E., “Pointwise estimates of solutions to nonlinear equations for nonlocal operators”, Ann. Scuola Norm. Super. Pisa (to appear) , arXiv: 1707.09596 | DOI

[12] Khavin V. P., Mazya V. G., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6 (1972), 67–138

[13] Hedberg L. I., Wolff T., “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187

[14] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Unabridged republ. of the 1993 original, Dover Publ., Mineola, NY, 2006

[15] Honzík P., Jaye B., “On the good-$\lambda$ inequality for nonlinear potentials”, Proc. Amer. Math. Soc., 140 (2012), 4167–4180

[16] Jawerth B., Perez C., Welland G., “The positive cone in Triebel–Lizorkin spaces and the relation among potential and maximal operators”, Harmonic Analysis and Partial Differential Equations (Boca Raton, FL, 1988), Contemp. Math., 107, Amer. Math. Soc., Providence, RI, 1990, 71–91

[17] Kilpeläinen T., Kuusi T., Tuhola-Kujanpää A., “Superharmonic functions are locally renormalized solutions”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 28 (2011), 775–795

[18] Kilpeläinen T., Malý J., “The Wiener test and potential estimates for quasilinear elliptic equations”, Acta Math., 172:1 (1994), 137–161

[19] Kuusi T., Mingione G., “Guide to nonlinear potential estimates”, Bull. Math. Sci., 4:1 (2014), 1–82

[20] Malý J., Ziemer W., Fine regularity of solutions of elliptic partial differential equations, Math. Surveys Monogr., 51, Amer. Math. Soc., Providence, RI, 1997

[21] Maz'ya V. G., Sobolev spaces with applications to elliptic partial differential quations, Grundlehren Math. Wiss., 342, Second, revised and augmented ed., Springer, Heidelberg, 2011

[22] Quinn S., Verbitsky I. E., “A sublinear version of Schur's lemma and elliptic PDE”, Anal. PDE, 11:2 (2018), 439–466

[23] Seesanea A., Verbitsky I. E.,, “Finite energy solutions to inhomogeneous nonlinear elliptic equations with sub-natural growth terms”, Adv. Calc. Var. (to appear) , arXiv: 1709.02048 | DOI

[24] Seesanea A., Verbitsky I. E., “Solutions to sublinear elliptic equations with finite generalized energy”, Calc. Var. Partial Differential Equations, 58:1 (2019), 6

[25] Trudinger N. S., Wang X. J., “On the weak continuity of elliptic operators and applications to potential theory”, Amer. J. Math., 124:2 (2002), 369–410

[26] Verbitsky I. E., “Sublinear equations and Schur's test for integral operators”, 50 Years with Hardy Spaces, Oper. Theory Adv. Appl., 261, Birkhauser, Cham, 2018, 467–484

[27] Verbitsky I. E., “Wolff's inequality for intrinsic nonlinear potentials and quasilinear elliptic equations”, Nonlinear Anal. (to appear) , arXiv: 1812.03418