Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_3_a1, author = {S.-S. Byun and D. K. Palagachev and L. G. Softova}, title = {Survey on gradient estimates for nonlinear elliptic equations in various function spaces}, journal = {Algebra i analiz}, pages = {10--35}, publisher = {mathdoc}, volume = {31}, number = {3}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_3_a1/} }
TY - JOUR AU - S.-S. Byun AU - D. K. Palagachev AU - L. G. Softova TI - Survey on gradient estimates for nonlinear elliptic equations in various function spaces JO - Algebra i analiz PY - 2019 SP - 10 EP - 35 VL - 31 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_3_a1/ LA - en ID - AA_2019_31_3_a1 ER -
S.-S. Byun; D. K. Palagachev; L. G. Softova. Survey on gradient estimates for nonlinear elliptic equations in various function spaces. Algebra i analiz, Tome 31 (2019) no. 3, pp. 10-35. http://geodesic.mathdoc.fr/item/AA_2019_31_3_a1/
[1] Acerbi E., Mingione G., “Gradient estimates for the $p(x)$-Laplacean system”, J. Reine Angew. Math., 584 (2005), 117–148
[2] Acerbi E., Mingione V., “Gradient estimates for a class of parabolic systems”, Duke Math. J., 136:2 (2007), 285–320
[3] Barbu V., Nonlinear semigroups and differential equations in Banach Spaces, Editura Acad. Repub. Soc. Rom., Bucharest; Noordhoff Internat. Publ., Leiden, 1976
[4] Baroni P., Bogelein V., “Calderón–Zygmund estimates for parabolic $p(x,t)$-Laplacian systems”, Rev. Mat. Iberoam., 30:4 (2014), 1355–1386
[5] Bogelein V., “Calderón–Zygmund theory for nonlinear parabolic systems”, Calc. Var. Partial Differential Equations, 51:3–4 (2014), 555–596
[6] Bui T., Duong X., “Global Lorentz estimates for nonlinear parabolic equations on nonsmooth domains”, Calc. Var. Partial Differential Equations, 56:2 (2017), 47
[7] Byun S.-S., “Gradient estimates in Orlicz spaces for nonlinear elliptic equations with BMO nonlinearity in nonsmooth domains”, Forum Math., 23:4 (2011), 693–711
[8] Byun S.-S., Cho Y., Palagachev D. K., “Global weighted estimates for nonlinear elliptic obstacle problems over Reifenberg domains”, Proc. Amer. Math. Soc., 13:6 (2015), 2527–2541
[9] Byun S.-S., Cho Y., Wang L., “Calderón–Zygmund theory for nonlinear elliptic problems with irregular obstacles”, J. Funct. Anal., 263:10 (2012), 3117–3143
[10] Byun S.-S., Kim Y., “Elliptic equations with measurable nonlinearities in nonsmooth domains”, Adv. Math., 288 (2016), 152–200
[11] Byun S.-S., Ok J., “On $W^{1,q(~\cdot~)}$-estimates for elliptic equations of $p(x)$-Laplacian type”, J. Math. Pures Appl. (9), 106:3 (2016), 512–545
[12] Byun S.-S., Ok J., “Nonlinear parabolic equations with variable exponent growth in nonsmooth domains”, SIAM J. Math. Anal., 48:5 (2016), 3148–3190
[13] Byun S.-S., Ok J., Palagachev D. K., Softova L., “Parabolic systems with measurable coefficients in weighted Orlicz spaces”, Commun. Contemp. Math., 18:2 (2016), 1550018
[14] Byun S.-S., Palagachev D. K., “Morrey regularity of solutions to quasilinear elliptic equations over Reifenberg flat domains”, Calc. Var. Partial Differential Equations, 49:1–2 (2014), 37–76
[15] Byun S.-S., Palagachev D. K., “Weighted $L^p$-estimates for elliptic equations with measurable coefficients in nonsmooth domains”, Potential Anal., 41:1 (2014), 51–79
[16] Byun S.-S., Palagachev D. K., Ryu S., “Weighted $W^{1,p}$ estimates for solutions of non-linear parabolic equations over non-smooth domains”, Bull. Lond. Math. Soc., 45:4 (2013), 765–778
[17] Byun S.-S., Palagachev D. K., Shin P., “Sobolev–Morrey regularity of solutions to general quasilinear elliptic equations”, Nonlinear Anal., 147 (2016), 176–190
[18] Byun S.-S., Palagachev D. K., Softova L., “Global gradient estimates in weighted Lebesgue spaces for parabolic operators”, Ann. Acad. Sci. Fenn. Math., 41:1 (2016), 67–83
[19] Byun S.-S., Park J., “Global weighted Orlicz estimates for parabolic measure data problems: application to estimates in variable exponent spaces”, J. Math. Anal. Appl., 67:2 (2018), 1194–1207
[20] Byun S.-S., Ryu S., “Weighted Orlicz estimates for general nonlinear parabolic equations over nonsmooth domains”, J. Funct. Anal., 272:10 (2017), 4103–4121
[21] Byun S.-S., Ryu S., “Global weighted estimates for the gradient of solutions to nonlinear elliptic equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30:2 (2013), 291–313
[22] Byun S.-S., Softova L. G., “Gradient estimates in generalized Morrey spaces for parabolic operators”, Math. Nachr., 288:14–15 (2015), 1602–1614
[23] Byun S.-S., Softova L. G., “Parabolic obstacle problem with measurable data in generalized Morrey spaces”, Z. Anal. Anwend., 35:2 (2016), 153–171
[24] Byun S.-S., Wang L., “Elliptic equations with BMO coefficients in Reifenberg domains”, Comm. Pure Appl. Math., 57:10 (2004), 1283–1310
[25] Byun S.-S., Wang L., “Parabolic equations in Reifenberg domains”, Arch. Ration. Mech. Anal., 176:2 (2005), 271–301
[26] Byun S.-S., Wang L., “Nonlinear gradient estimates for elliptic equations of general type”, Calc. Var. Partial Differential Equations, 45:3–4 (2012), 403–419
[27] Byun S.-S., Yao F., Zhou S., “Gradient estimates in Orlicz space for nonlinear elliptic equations”, J. Funct. Anal., 45:8 (2008), 1851–1873
[28] Caffarelli L. A., Peral I., “On $W^{1,p}$ estimates for elliptic equations in divergence form”, Comm. Pure Appl. Math., 51:1 (1998), 1–21
[29] Calderon A. P., Zygmund A., “On the existence of certain singular integrals”, Acta Math., 88 (1952), 85–139
[30] Cianchi A., “Optimal Orlicz–Sobolev embeddings”, Rev. Mat. Iberoam., 20:2 (2004), 427–474
[31] Cruz-Uribe D. V., Fiorenza A., Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013
[32] Cruz-Uribe D. V., Hästö P., “Extrapolation and interpolation in generalized Orlicz spaces”, Trans. Amer. Math. Soc., 370:6 (2018), 4323–4349
[33] Cruz-Uribe D. V., Wang L.-A. D., “Extrapolation and weighted norm inequalities in the variable Lebesgue spaces”, Trans. Amer. Math. Soc., 369:2 (2017), 1205–1235
[34] DiBenedetto E., Degenerate parabolic equations, Universitext, Springer, New York, 1993
[35] Diening L., Harjulehto P., Hästö P., Ružička M., Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Math., 2017, Springer, Heidelberg, 2011
[36] Diening L., Kaplicky P., Schwarzacher S., “BMO estimates for the $p$-Laplacian”, Nonlinear Anal., 75:2 (2012), 637–650
[37] Diening L., Schwarzacher S., “Global gradient estimates for the $p(x)$-Laplacian”, Nonlinear Anal., 106 (2014), 70–85
[38] Di Fazio G., “$L^p$ estimates for divergence form elliptic equations with discontinuous coefficients”, Boll. Un. Mat. Ital. A (7), 10:2 (1996), 409–420
[39] Fiorenza A., Krbec M., “Indices of Orlicz spaces and some applications”, Comm. Math. Univ. Carolin., 38:3 (1997), 433–451
[40] Guliyev V. S., Softova L. G., “Generalized Morrey estimates for the gradient of divergence form parabolic operators with discontinuous coefficients”, J. Differential Equations, 259:6 (2015), 2368–2387
[41] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983
[42] Giusti E., Direct methods in the calculus of variations, World Sci. Publ. Co., Inc., River Edge, NJ, 2003
[43] Grafakos L., Classical Fourier analysis, Graduate Texts in Math., 249, Third ed., Springer, New York, 2014
[44] Iwaniec T., “Projections onto gradient fields and $L^p$-estimates for degenerated elliptic operators”, Studia Math., 75:3 (1983), 293–312
[45] Iwaniec T., Sbordone C., “Riesz transforms and elliptic PDEs with VMO coefficients”, J. Anal. Math., 74 (1998), 183–212
[46] John F., Nirenberg L., “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14 (1961), 415–426
[47] Kerman R. A., Torchinsky A.,, “Integral inequalities with weights for the Hardy maximal function”, Studia Math., 71:3 (1981/82), 277–284
[48] Kinnunen J., Zhou Sh., “A local estimate for nonlinear equations with discontinuous coefficients”, Comm. Partial Differential Equations, 24:11–12 (1999), 2043–2068
[49] Kokilashvili V., Krbec M., Weighted inequalities in Lorentz and Orlicz spaces, World Sci. Publ. Co., Inc., River Edge, NJ, 1991
[50] Kováčik O., Rákosník J., “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41:4 (1991), 592–618
[51] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GITTL, M., 1958
[52] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 161–175
[53] Kuusi T., Mingione G., “Universal potential estimates”, J. Funct. Anal., 262:10 (2012), 4205–4269
[54] Kuusi T., Mingione G., “Guide to nonlinear potential estimates”, Bull. Math. Sci., 4:1 (2014), 1–82
[55] Kuusi T., Mingione G., “Linear potentials in nonlinear potential theory”, Arch. Ration. Mech. Anal., 207:1 (2013), 215–246
[56] Kuusi T., Mingione G., “The Wolff gradient bound for degenerate parabolic equations”, J. Eur. Math. Soc. (JEMS), 16:4 (2014), 835–892
[57] Kuusi T., Mingione G., “Vectorial nonlinear potential theory”, J. Eur. Math. Soc. (JEMS), 20:4 (2018), 929–1004
[58] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973
[59] Landis E. M., Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipov, Nauka, M., 1971
[60] Mengesha T., Phuc N. C., “Weighted and regularity estimates for nonlinear equations on Reifenberg flat domains”, J. Differential Equations, 250:5 (2011), 2485–2507
[61] Meyers N. G., “An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations”, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189–206
[62] Milakis E., Toro T., “Divergence form operators in Reifenberg flat domains”, Math. Z., 264:1 (2010), 15–41
[63] Morrey C. B., Multiple shntegrals in the salculus of mariations, Grundlehren Math. Wiss., 130, Springer-Verlag, Inc., New York, 1966
[64] Muckenhoupt B., “Weighted norm inequalities for the Hardy maximal function”, Trans. Amer. Math. Soc., 165 (1972), 207–226
[65] Orlicz W., “Über konjugierte Exponentenfolgen”, Studia Math., 3 (1931), 200–211
[66] Palagachev D. K., Softova L., “The Calderón–Zygmund property for quasilinear divergence form equations over Reifenberg flat domains”, Nonlinear Anal., 74:5 (2011), 1721–1730
[67] Rao M. M., Ren Z. D., Theory of Orlicz spaces, Monogr. Textbooks Pure Appl. Math., 146, Marcel Dekker, Inc., New York, 1991
[68] Reifenberg E. R., “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104 (1960), 1–92
[69] Sarason D., “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405
[70] Sharapudinov I. I., “O topologii prostranstva $L^{p(t)}([0;1])$”, Mat. zametki, 26:4 (1978), 613–632
[71] Stein E. M., Harmonic analysis: real-variable methods, orthogonality and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993
[72] Torchinsky A., Real-variable methods in harmonic analysis, Pure Appl. Math., 123, Acad. Press, Inc., Orlando, FL, 1986
[73] Toro T., “Doubling and flatness: geometry of measures”, Notices Amer. Math. Soc., 44:9 (1997), 1087–1094
[74] Tsenov I. V., “Obobschenie zadachi o nailuchshem priblizhenii funktsii v prostranstve $L^s$”, Uchen. zap. Dagestan. gos. un-ta, 7 (1961), 25–37
[75] Wang L., “A geometric approach to the Calderón–Zygmund estimates”, Acta Math. Sin. (Engl. Ser.), 19:2 (2003), 381–396
[76] Wang L., Yao F., Zhou S., Jia H., “Optimal regularity theory for the Poisson equation”, Proc. Amer. Math. Soc., 137:6 (2009), 2037–2047
[77] Yao F., “Local gradient estimates for the $p(x)$-Laplacian elliptic equations”, Math. Inequal. Appl., 17:1 (2014), 259–268
[78] Zhang C., “Global weighted estimates for the nonlinear parabolic equations with non-standard growth”, Calc. Var. Partial Differential Equations, 55:5 (2016), 109
[79] Zhikov V. V., “Voprosy skhodimosti, dvoistvennosti i usredneniya dlya funktsionalov variatsionnogo ischisleniya”, Izv. AN SSSR. Ser. mat., 47:5 (1983), 961–998
[80] Zhikov V. V., “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. mat., 50:4 (1986), 675–710
[81] Zhikov V. V., “On Lavrentiev's phenomenon”, Russian J. Math. Phys., 3:2 (1995), 249–269
[82] Zhikov V. V., “Otsenki tipa Meiersa dlya resheniya nelineinoi sistemy Stoksa”, Differ. uravn., 33:1 (1997), 107–114