Approximate approximations: recent developments in the computation of high dimensional potentials
Algebra i analiz, Tome 31 (2019) no. 2, pp. 227-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to a fast method of an arbitrary high order for approximating volume potentials that is successful also in the high dimensional case. The cubature formulas have been obtained by using the basis functions introduced in the theory of approximate approximations. As basis functions, we choose products of Gaussians and special polynomials, for which the action of integral operators can be written as one-dimensional integrals with a separable integrand, i.e., a product of functions depending only on one of the variables. Then a separated representation of the density, combined with a suitable quadrature rule, leads to a separable representation of the integral operator. Since only one-dimensional operations are used, the resulting method is efficient also in the high dimensional case. We show how this new approach can be applied to the cubature of polyharmonic potentials, to potentials of elliptic differential operators acting on densities on hyper-rectangular domains, and to parabolic problems.
Keywords: higher dimensions, separated representation, high order approximation, convection-diffusion potential, heat potential, polyharmonic potential.
@article{AA_2019_31_2_a9,
     author = {F. Lanzara and G. Schmidt},
     title = {Approximate approximations: recent developments in the computation of high dimensional potentials},
     journal = {Algebra i analiz},
     pages = {227--247},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/}
}
TY  - JOUR
AU  - F. Lanzara
AU  - G. Schmidt
TI  - Approximate approximations: recent developments in the computation of high dimensional potentials
JO  - Algebra i analiz
PY  - 2019
SP  - 227
EP  - 247
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/
LA  - en
ID  - AA_2019_31_2_a9
ER  - 
%0 Journal Article
%A F. Lanzara
%A G. Schmidt
%T Approximate approximations: recent developments in the computation of high dimensional potentials
%J Algebra i analiz
%D 2019
%P 227-247
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/
%G en
%F AA_2019_31_2_a9
F. Lanzara; G. Schmidt. Approximate approximations: recent developments in the computation of high dimensional potentials. Algebra i analiz, Tome 31 (2019) no. 2, pp. 227-247. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/

[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publ., New York, 1968 | MR

[2] Beylkin G., Mohlenkamp M. J., “Numerical-operator calculus in higher dimensions”, Proc. Nat. Acad. Sci. USA, 99:16 (2002), 10246–10251 | DOI | MR | Zbl

[3] Beylkin G., Mohlenkamp M. J., “Algorithms for numerical analysis in high dimensions”, SIAM J. Sci. Comput., 26:6 (2005), 2133–2159 | DOI | MR | Zbl

[4] Evans L. C., Partial differential equations, Grad. Stud. in Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl

[5] Gavrilyuk I. P., Hackbusch W., Khoromskij B. N., “Hierarchical tensor-product approximation of the inverse and related operators in high-dimensional elliptic problems”, Computing, 74:2 (2005), 131–157 | DOI | MR | Zbl

[6] Hackbusch W., Khoromskij B. N., “Tensor-product approximation to multi-dimensional integral operators and Green's functions”, SIAM J. Matrix Anal. Appl., 30:3 (2008), 1233–1253 | DOI | MR

[7] Gazzola F., Grunau H.-C., Sweers G., “Polyharmonic boundary value problems”, Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Math., 1991, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[8] Hestenes M. R., “Extension of the range of a differentiable function”, Duke Math. J., 8 (1941), 183–192 | DOI | MR

[9] Khoromskij B. N., “Fast and accurate tensor approximation of a multivariate convolution with linear scaling in dimension”, J. Comput. Appl. Math., 234:11 (2010), 3122–3139 | DOI | MR | Zbl

[10] Lanzara F., Maz'ya V., Schmidt G., “On the fast computation of high dimensional volume potentials”, Math. Comput., 80:274 (2011), 887–904 | DOI | MR | Zbl

[11] Lanzara F., Maz'ya V., Schmidt G., “Accurate cubature of volume potentials over high-dimensional half-spaces”, Probl. mat. anal., 55 (2011), 37–52 | MR | Zbl

[12] Lanzara F., Maz'ya V., Schmidt G., “Computation of volume potentials over bounded domains via approximate approximations”, Probl. mat. anal., 68 (2013), 157–171 | MR | Zbl

[13] Lanzara F., Maz'ya V., Schmidt G., “Fast cubature of volume potentials over rectangular domains by approximate approximations”, Appl. Comput. Harmon. Anal., 36:1 (2014), 167–182 | DOI | MR | Zbl

[14] Lanzara F., Maz'ya V., Schmidt G., “Approximation of solutions to multidimensional parabolic equations by approximate approximations”, Appl. Comput. Harmon. Anal., 41:3 (2016), 749–767 | DOI | MR | Zbl

[15] Lanzara F., Maz'ya V., Schmidt G., “A fast solution method for time dependent multidimensional Schrödinger equations”, Appl. Anal., 98 (2019), 408–429 | DOI | MR | Zbl

[16] Lanzara F., Maz'ya V., Schmidt G., “Accurate computation of the high-dimensional diffraction potential over hyper-rectangles”, Bull. TICMI, 22 (2018), 91–102

[17] Lanzara F., Maz'ya V., Schmidt G., Fast cubature of high dimensional biharmonic potential based on “Approximate approximations”, arXiv: 1809.09438

[18] Lanzara F., Schmidt G., “On the computation of high-dimensional potentials of advection-diffusion operators”, Mathematika, 61 (2015), 309–327 | DOI | MR | Zbl

[19] Maz'ya V., “A new approximation method and its applications to the calculation of volume potentials, boundary point method, 3”, DFG-Kolloqium des DFG-Forschungsschwerpunktes Randelementmethoden (1991)

[20] Maz'ya V., “Approximate approximations”, The Mathematics of Finite Elements and Applications (Uxbridge, 1993), Wiley, Chichester, 1994, 77–104 | Zbl

[21] Maz'ya V., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, 2nd, revised, augmented ed., Springer, Heidelberg, 2011 | DOI | MR | Zbl

[22] Maz'ya V., Schmidt G., ““Approximate Approximations” and the cubature of potentials”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9), 6:3 (1995), 161–184 | MR | Zbl

[23] Maz'ya V., Schmidt G., Approximate approximations, Math. Surveys Monogr., 141, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[24] Mitrea D., Distributions, partial differential equations, and harmonic analysis, Universitext, Springer, New York, 2013 | DOI | MR | Zbl

[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 2, Spetsialnye funktsii, Fizmatlit., M., 1983 | MR

[26] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR

[27] Takahasi H., Mori M., “Doubly exponential formulas for numerical integration”, Publ. Res. Inst. Math. Sci., 9, 1974, 721–741 | DOI | MR | Zbl