Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_2_a9, author = {F. Lanzara and G. Schmidt}, title = {Approximate approximations: recent developments in the computation of high dimensional potentials}, journal = {Algebra i analiz}, pages = {227--247}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/} }
TY - JOUR AU - F. Lanzara AU - G. Schmidt TI - Approximate approximations: recent developments in the computation of high dimensional potentials JO - Algebra i analiz PY - 2019 SP - 227 EP - 247 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/ LA - en ID - AA_2019_31_2_a9 ER -
F. Lanzara; G. Schmidt. Approximate approximations: recent developments in the computation of high dimensional potentials. Algebra i analiz, Tome 31 (2019) no. 2, pp. 227-247. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a9/
[1] Abramowitz M., Stegun I. A., Handbook of mathematical functions with formulas, graphs and mathematical tables, Dover Publ., New York, 1968 | MR
[2] Beylkin G., Mohlenkamp M. J., “Numerical-operator calculus in higher dimensions”, Proc. Nat. Acad. Sci. USA, 99:16 (2002), 10246–10251 | DOI | MR | Zbl
[3] Beylkin G., Mohlenkamp M. J., “Algorithms for numerical analysis in high dimensions”, SIAM J. Sci. Comput., 26:6 (2005), 2133–2159 | DOI | MR | Zbl
[4] Evans L. C., Partial differential equations, Grad. Stud. in Math., 19, 2nd ed., Amer. Math. Soc., Providence, RI, 2010 | DOI | MR | Zbl
[5] Gavrilyuk I. P., Hackbusch W., Khoromskij B. N., “Hierarchical tensor-product approximation of the inverse and related operators in high-dimensional elliptic problems”, Computing, 74:2 (2005), 131–157 | DOI | MR | Zbl
[6] Hackbusch W., Khoromskij B. N., “Tensor-product approximation to multi-dimensional integral operators and Green's functions”, SIAM J. Matrix Anal. Appl., 30:3 (2008), 1233–1253 | DOI | MR
[7] Gazzola F., Grunau H.-C., Sweers G., “Polyharmonic boundary value problems”, Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Lecture Notes in Math., 1991, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[8] Hestenes M. R., “Extension of the range of a differentiable function”, Duke Math. J., 8 (1941), 183–192 | DOI | MR
[9] Khoromskij B. N., “Fast and accurate tensor approximation of a multivariate convolution with linear scaling in dimension”, J. Comput. Appl. Math., 234:11 (2010), 3122–3139 | DOI | MR | Zbl
[10] Lanzara F., Maz'ya V., Schmidt G., “On the fast computation of high dimensional volume potentials”, Math. Comput., 80:274 (2011), 887–904 | DOI | MR | Zbl
[11] Lanzara F., Maz'ya V., Schmidt G., “Accurate cubature of volume potentials over high-dimensional half-spaces”, Probl. mat. anal., 55 (2011), 37–52 | MR | Zbl
[12] Lanzara F., Maz'ya V., Schmidt G., “Computation of volume potentials over bounded domains via approximate approximations”, Probl. mat. anal., 68 (2013), 157–171 | MR | Zbl
[13] Lanzara F., Maz'ya V., Schmidt G., “Fast cubature of volume potentials over rectangular domains by approximate approximations”, Appl. Comput. Harmon. Anal., 36:1 (2014), 167–182 | DOI | MR | Zbl
[14] Lanzara F., Maz'ya V., Schmidt G., “Approximation of solutions to multidimensional parabolic equations by approximate approximations”, Appl. Comput. Harmon. Anal., 41:3 (2016), 749–767 | DOI | MR | Zbl
[15] Lanzara F., Maz'ya V., Schmidt G., “A fast solution method for time dependent multidimensional Schrödinger equations”, Appl. Anal., 98 (2019), 408–429 | DOI | MR | Zbl
[16] Lanzara F., Maz'ya V., Schmidt G., “Accurate computation of the high-dimensional diffraction potential over hyper-rectangles”, Bull. TICMI, 22 (2018), 91–102
[17] Lanzara F., Maz'ya V., Schmidt G., Fast cubature of high dimensional biharmonic potential based on “Approximate approximations”, arXiv: 1809.09438
[18] Lanzara F., Schmidt G., “On the computation of high-dimensional potentials of advection-diffusion operators”, Mathematika, 61 (2015), 309–327 | DOI | MR | Zbl
[19] Maz'ya V., “A new approximation method and its applications to the calculation of volume potentials, boundary point method, 3”, DFG-Kolloqium des DFG-Forschungsschwerpunktes Randelementmethoden (1991)
[20] Maz'ya V., “Approximate approximations”, The Mathematics of Finite Elements and Applications (Uxbridge, 1993), Wiley, Chichester, 1994, 77–104 | Zbl
[21] Maz'ya V., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, 2nd, revised, augmented ed., Springer, Heidelberg, 2011 | DOI | MR | Zbl
[22] Maz'ya V., Schmidt G., ““Approximate Approximations” and the cubature of potentials”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9), 6:3 (1995), 161–184 | MR | Zbl
[23] Maz'ya V., Schmidt G., Approximate approximations, Math. Surveys Monogr., 141, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl
[24] Mitrea D., Distributions, partial differential equations, and harmonic analysis, Universitext, Springer, New York, 2013 | DOI | MR | Zbl
[25] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady, v. 2, Spetsialnye funktsii, Fizmatlit., M., 1983 | MR
[26] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, 1970 | MR
[27] Takahasi H., Mori M., “Doubly exponential formulas for numerical integration”, Publ. Res. Inst. Math. Sci., 9, 1974, 721–741 | DOI | MR | Zbl