On Landis' conjecture in the plane when the potential has an exponentially decaying negative part
Algebra i analiz, Tome 31 (2019) no. 2, pp. 204-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article, we continue our investigation into the unique continuation properties of real-valued solutions to elliptic equations in the plane. More precisely, we make another step towards proving a quantitative version of Landis' conjecture by establishing unique continuation at infinity estimates for solutions to equations of the form $ - \Delta u + V u = 0$ in $ \mathbb{R}^2$, where $ V = V_+ - V_-$, $ V_+ \in L^\infty $, and $ V_-$ is a nontrivial function that exhibits exponential decay at infinity. The main tool in the proof of this theorem is an order of vanishing estimate in combination with an iteration scheme. To prove the order of vanishing estimate, we establish a similarity principle for vector-valued Beltrami systems.
Keywords: Landis' conjecture, quantitative unique continuation, order of vanishing, vector-valued Beltrami system.
@article{AA_2019_31_2_a8,
     author = {B. Davey and C. Kenig and J.-N. Wang},
     title = {On {Landis'} conjecture in the plane when the potential has an exponentially decaying negative part},
     journal = {Algebra i analiz},
     pages = {204--226},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/}
}
TY  - JOUR
AU  - B. Davey
AU  - C. Kenig
AU  - J.-N. Wang
TI  - On Landis' conjecture in the plane when the potential has an exponentially decaying negative part
JO  - Algebra i analiz
PY  - 2019
SP  - 204
EP  - 226
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/
LA  - en
ID  - AA_2019_31_2_a8
ER  - 
%0 Journal Article
%A B. Davey
%A C. Kenig
%A J.-N. Wang
%T On Landis' conjecture in the plane when the potential has an exponentially decaying negative part
%J Algebra i analiz
%D 2019
%P 204-226
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/
%G en
%F AA_2019_31_2_a8
B. Davey; C. Kenig; J.-N. Wang. On Landis' conjecture in the plane when the potential has an exponentially decaying negative part. Algebra i analiz, Tome 31 (2019) no. 2, pp. 204-226. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/

[1] Berndtsson B., Rosay J.-P., “Quasi-isometric vector bundles and bounded factorization of holomorphic matrices”, Ann. Inst. Fourier (Grenoble), 53:3 (2003), 885–901 | DOI | MR | Zbl

[2] Bourgain J., Kenig C. E., “On localization in the continuous Anderson–Bernoulli model in higher dimension”, Invent. Math., 161:2 (2005), 389–426 | DOI | MR | Zbl

[3] Davey B., “Some quantitative unique continuation results for eigenfunctions of the magnetic Schrödinger operator”, Comm. Partial Differential Equations, 39:5 (2014), 876–945 | DOI | MR | Zbl

[4] Davey B., Kenig C., Wang J.-N., “The Landis conjecture for variable coefficient second-order elliptic PDEs”, Trans. Amer. Math. Soc., 369:11 (2017), 8209–8237 | DOI | MR | Zbl

[5] Davey B., Wang J.-N., Landis' conjecture for general second order elliptic equations with singular lower order terms in the plane, 2017, arXiv: 1709.09042

[6] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[7] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 | MR | Zbl

[8] Kenig C., Silvestre L., Wang J.-N., “On Landis' conjecture in the plane”, Comm. Partial Differential Equations, 40:4 (2015), 766–789 | DOI | MR | Zbl

[9] Lin C.-L., Wang J.-N., “Quantitative uniqueness estimates for the general second order elliptic equations”, J. Funct. Anal., 266:8 (2014), 5108–5125 | DOI | MR | Zbl

[10] Malgrange B., Lectures on the theory of functions of several complex variables, Tata Inst. Fundam. Res. Lect. Math. Phys., 13, Springer-Verlag, Berlin, 1984 | MR | Zbl

[11] Wiener N., Masani P., “The prediction theory of multivariate stochastic processes. I. The regularity condition”, Acta Math., 98 (1957), 111–150 | DOI | MR | Zbl