Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_2_a8, author = {B. Davey and C. Kenig and J.-N. Wang}, title = {On {Landis'} conjecture in the plane when the potential has an exponentially decaying negative part}, journal = {Algebra i analiz}, pages = {204--226}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/} }
TY - JOUR AU - B. Davey AU - C. Kenig AU - J.-N. Wang TI - On Landis' conjecture in the plane when the potential has an exponentially decaying negative part JO - Algebra i analiz PY - 2019 SP - 204 EP - 226 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/ LA - en ID - AA_2019_31_2_a8 ER -
B. Davey; C. Kenig; J.-N. Wang. On Landis' conjecture in the plane when the potential has an exponentially decaying negative part. Algebra i analiz, Tome 31 (2019) no. 2, pp. 204-226. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a8/
[1] Berndtsson B., Rosay J.-P., “Quasi-isometric vector bundles and bounded factorization of holomorphic matrices”, Ann. Inst. Fourier (Grenoble), 53:3 (2003), 885–901 | DOI | MR | Zbl
[2] Bourgain J., Kenig C. E., “On localization in the continuous Anderson–Bernoulli model in higher dimension”, Invent. Math., 161:2 (2005), 389–426 | DOI | MR | Zbl
[3] Davey B., “Some quantitative unique continuation results for eigenfunctions of the magnetic Schrödinger operator”, Comm. Partial Differential Equations, 39:5 (2014), 876–945 | DOI | MR | Zbl
[4] Davey B., Kenig C., Wang J.-N., “The Landis conjecture for variable coefficient second-order elliptic PDEs”, Trans. Amer. Math. Soc., 369:11 (2017), 8209–8237 | DOI | MR | Zbl
[5] Davey B., Wang J.-N., Landis' conjecture for general second order elliptic equations with singular lower order terms in the plane, 2017, arXiv: 1709.09042
[6] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl
[7] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, 2001 | MR | Zbl
[8] Kenig C., Silvestre L., Wang J.-N., “On Landis' conjecture in the plane”, Comm. Partial Differential Equations, 40:4 (2015), 766–789 | DOI | MR | Zbl
[9] Lin C.-L., Wang J.-N., “Quantitative uniqueness estimates for the general second order elliptic equations”, J. Funct. Anal., 266:8 (2014), 5108–5125 | DOI | MR | Zbl
[10] Malgrange B., Lectures on the theory of functions of several complex variables, Tata Inst. Fundam. Res. Lect. Math. Phys., 13, Springer-Verlag, Berlin, 1984 | MR | Zbl
[11] Wiener N., Masani P., “The prediction theory of multivariate stochastic processes. I. The regularity condition”, Acta Math., 98 (1957), 111–150 | DOI | MR | Zbl