Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_2_a7, author = {V. Gol'dshtein and V. Pchelintsev and A. Ukhlov}, title = {On conformal spectral gap estimates of the {Dirichlet-Laplacian}}, journal = {Algebra i analiz}, pages = {189--203}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a7/} }
V. Gol'dshtein; V. Pchelintsev; A. Ukhlov. On conformal spectral gap estimates of the Dirichlet-Laplacian. Algebra i analiz, Tome 31 (2019) no. 2, pp. 189-203. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a7/
[1] Ahlfors L., “Quasiconformal reflections”, Acta Math., 109 (1963), 291–301 | DOI | MR | Zbl
[2] Ahlfors L., Lectures on quasiconformal mappings, Jr. Van Nostrand Math. Stud., 10, D. Van Nostrand Co., Inc., Toronto, 1966 | MR
[3] Ashbaugh M. S., “Open problems on eigenvalues of the Laplacian. Analytic and geometric inequalities and applications”, Math. Appl., 478, Kluwer Acad. Publ., Dordrecht, 1999, 13–28 | MR | Zbl
[4] Ashbaugh M. S., Benguria R. D., “Proof of the Payne–Pólya–Weinberger conjeture”, Bull. Amer. Math. Soc., 25:1 (1991), 19–29 | DOI | MR | Zbl
[5] Ashbaugh M. S., Benguria R. D., “A second proof of the Payne–Pólya–Weinberger conjeture”, Commun. Math. Phys., 147:1 (1992), 181–190 | DOI | MR | Zbl
[6] Ashbaugh M. S., Benguria R. D., “A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of $S^n$”, Trans. Amer. Math. Soc., 353:3 (2001), 1055–1087 | DOI | MR | Zbl
[7] Ashbaugh M. S., The fundamental gap, unpublished write-up for the AIMS meeting in May 2006, http://www.aimath.org/WWN/loweigenvalues/gap.pdf
[8] Astala K., “Area distortion of quasiconformal mappings”, Acta Math., 173:1 (1994), 37–60 | DOI | MR | Zbl
[9] Brands J. J. A.,M., “Bounds for the ratios of the first three membrane eigenvalues”, Arch. Ration. Mech. Anal., 16 (1964), 265–258 | DOI | MR
[10] Burenkov V. I., Gol'dshtein V., Ukhlov A., “Conformal spectral stability for the Dirichlet–Laplace operator”, Math. Nachr., 288:16 (2015), 1822–1833 | DOI | MR | Zbl
[11] Chiti G., “A bound for the ratio of the first two eigenvalues of a membrane”, SIAM J. Math. Anal., 14:6 (1983), 1163–1167 | DOI | MR | Zbl
[12] de Vries H. L., “On the upper bound for the ratio of the first two membrane eigenvalues”, Z. Naturforsch., 22 A (1967), 152–153 | MR | Zbl
[13] Faber G., “Beweis, dass unter allen homogenen Membranen von gleicher Flache und gleicher Spannung die kreisformige den tiefste, Grundton gibt”, Sitzungsber. Bayer. Akad. Wiss., Munchen, 1923, 169–172 | Zbl
[14] Gehring F. W., “Characteristic properties of quasidisks”, Sém. Math. Supérieures, 84, Press. Univ. Montréal, Montréal, 1982 | MR | Zbl
[15] Goldshtein V. M., “Stepen summiruemosti obobschennykh proizvodnykh kvazikonformnykh gomeomorfizmov”, Sib. mat. zh., 22:6 (1981), 22–40 | MR
[16] Gol'dshtein V., Gurov L., “Applications of change of variables operators for exact embedding theorems”, Integral Equcations Operator Theory, 19:1 (1994), 1–24 | DOI | MR | Zbl
[17] Gol'dshtein V., Pchelintsev V., Ukhlov A., “Integral estimates of conformal derivatives and spectral properties of the Neumann–Laplacian”, J. Math. Anal. Appl., 463:1 (2018), 19–39 | DOI | MR | Zbl
[18] Gol'dshtein V., Ukhlov A., “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361:7 (2009), 3829–3850 | DOI | MR | Zbl
[19] Gol'dshtein V., Ukhlov A., “On the first eigenvalues of free vibrating membranes in conformal regular domains”, Arch. Ration. Mech. Anal., 221:2 (2016), 893–915 | DOI | MR | Zbl
[20] Grebenkov D. S., Nguyen B.-T., “Geometrical Structure of Laplacian Eigenfunctions”, SIAM Review, 55:4 (2013), 601–667 | DOI | MR | Zbl
[21] Krahn E., “Uber eine von Rayleigh formulierte Minimaleigenschaft des Kreises”, Math. Ann., 94:11 (1925), 97–100 | DOI | MR | Zbl
[22] Krantz S. G., Geometric function theory. Explorations in complex analysis, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2006 | MR | Zbl
[23] Maz'ya V., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren. Math. Wiss., 342, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[24] Payne L. E., Pólya G., Weinberger H. F., “Sur le quotient de deux fréquences propres consécutives”, C. R. Acad. Sci. Paris, 241 (1955), 917–919 | MR | Zbl
[25] Payne L. E., Pólya G., Weinberger H. F., “On the ratio of consecutive eigenvalues”, J. Math. Phys., 35 (1956), 289–298 | DOI | MR | Zbl
[26] Payne L. E., Weinberger H. F., “Some isoperimetric inequalities for membrane frequencies and torsional rigidity”, J. Math. Anal. Appl., 2 (1961), 210–216 | DOI | MR | Zbl
[27] Rohde S., “Quasicircles modulo bi-Lipschhitz maps”, Rev. Mat. Iberoam., 17:3 (2001), 643–659 | DOI | MR | Zbl
[28] Talenti G., “Best constants in Sobolev inequality”, Ann. Mat. Pura Appl., 110:4 (1976), 353–372 | DOI | MR | Zbl
[29] Ukhlov A. D., “Otobrazheniya, porozhdayuschie vlozheniya prostranstv Soboleva”, Sib. mat. zh., 34:11 (1993), 185–192 | Zbl
[30] Vodopyanov S. K., Ukhlov A. D., “Operatory superpozitsii v prostranstvakh Soboleva”, Izv. vuzov. Mat., 2002, no. 10, 11–33