Bounded point derivations on certain function spaces
Algebra i analiz, Tome 31 (2019) no. 2, pp. 174-188.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $ X$ be a compact nowhere dense subset of the complex plane $ \mathbb{C}$, and let $ dA$ denote two-dimensional Lebesgue (or area) measure in $ \mathbb{C}$. Denote by $ \mathcal {R}(X)$ the set of all rational functions having no poles on $ X$, and by $ R^p(X)$ the closure of $ \mathcal {R}(X)$ in $ L^p(X,dA)$ whenever $ 1\leq p\infty $. The purpose of this paper is to study the relationship between bounded derivations on $ R^p(X)$ and the existence of approximate derivatives provided $ 2$, and to draw attention to an anomaly that occurs when $ p=2$.
Keywords: point derivation, approximate derivative, monogeneity, capacity.
@article{AA_2019_31_2_a6,
     author = {J. E. Brennan},
     title = {Bounded point derivations on certain function spaces},
     journal = {Algebra i analiz},
     pages = {174--188},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a6/}
}
TY  - JOUR
AU  - J. E. Brennan
TI  - Bounded point derivations on certain function spaces
JO  - Algebra i analiz
PY  - 2019
SP  - 174
EP  - 188
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a6/
LA  - en
ID  - AA_2019_31_2_a6
ER  - 
%0 Journal Article
%A J. E. Brennan
%T Bounded point derivations on certain function spaces
%J Algebra i analiz
%D 2019
%P 174-188
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a6/
%G en
%F AA_2019_31_2_a6
J. E. Brennan. Bounded point derivations on certain function spaces. Algebra i analiz, Tome 31 (2019) no. 2, pp. 174-188. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a6/

[1] Adams D. R., Hedberg L. I., Function spaces and potential theory, Grundlehren Math. Wiss., 314, Springer, Berlin, 1996 | DOI | MR

[2] Borel É., Leçons sur les Fonctions Monogènes Uniformes d'une Variable Complexe, Gauthier-Villars, Paris, 1917 | Zbl

[3] Brennan J. E., “Bounded point derivations on certain function algebras”, Oper. Theory Adv. Appl., 261, Birkhäuser, Basel, 2018, 173–190 | DOI | MR | Zbl

[4] Brennan J. E., “Approximation in the mean and quasianalyticity”, J. Funct. Anal., 12 (1973), 307–320 | DOI | MR | Zbl

[5] Brennan J. E., “Invariant subspaces and rational approximation”, J. Funct. Anal., 7 (1971), 285–310 | DOI | MR | Zbl

[6] Browder A., “Point derivations on function algebras”, J. Funct. Anal., 1 (1967), 22–27 | DOI | MR | Zbl

[7] Browder A., Introduction to function algebras, Benjamin W. A., New York, 1969 | MR | Zbl

[8] Deterding S. M., “Bounded point derivations on $R^p(X)$ and approximate derivatives”, Math. Scand., 124 (2019), 132–148 | DOI | MR | Zbl

[9] Dolzhenko E. P., “Postroenie na nigde ne plotnom kontinuume nigde ne differentsiruemoi funktsii, razlagayuscheisya v ryad po ratsionalnym funktsiyam”, Dokl. AN SSSR, 125:5 (1959), 970–973 | Zbl

[10] Dolzhenko E. P., “Raboty D. E. Menshova po teorii analiticheskikh funktsii i sovremennoe sostoyanie teorii monogennosti”, Uspekhi mat. nauk, 47:5 (1992), 67–96 | MR | Zbl

[11] Fernstrøm C., “Bounded point evaluations and approximation in $L^p$ by analytic functions”, Spaces of analytic functions, Sem. Functional Anal. and Function Theory (Kristiansand, 1975), Lecture Notes in Math., 512, Springer, Berlin, 1976, 65–68 | DOI | MR

[12] Fernstrøm C., Polking J. C., “Bounded point evaluations and approximation in $L^p$ by solutions of elliptic partial differential equations”, J. Funct. Anal., 28 (1978), 1–20 | DOI | MR | Zbl

[13] Hallstrom A. P., “On bounded point derivations and analytic capacity”, J. Funct. Anal., 4 (1969), 153–165 | DOI | MR | Zbl

[14] Hedberg L. I., “Bounded point evaluations and capacity”, J. Funct. Anal., 10 (1972), 269–280 | DOI | MR | Zbl

[15] Hedberg L. I., “Non-linear potentials and approximation in the mean by analytic functions”, Math. Z., 129 (1972), 299–319 | DOI | MR | Zbl

[16] Mazya V. G., “$p$-Provodimost i teoremy vlozheniya nekotorykh funktsionalnykh prostranstv v prostranstvo $C$”, Dokl. AN SSSR, 140:2 (1961), 299–302 | Zbl

[17] Maz'ja V. G., Sobolev spaces, Grundlehren Math. Wiss., 342, Springer, Berlin, 2011 | MR

[18] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6 (1972), 67–138 | MR | Zbl

[19] Meyers N. G., “A theory of capacities for potentials of functions in Lebesgue classes”, Math. Scand., 26 (1970), 255–292 | DOI | MR | Zbl

[20] O'Farrell A. G., “An isolated bounded point derivation”, Proc. Amer. Math. Soc., 39 (1973), 559–562 | DOI | MR | Zbl

[21] Singer I. M., Wermer J., “Derivations on commutative normed algebras”, Math. Ann., 129 (1955), 260–264 | DOI | MR | Zbl

[22] Wang J. L.-M., “An approximate Taylor's theorem for R(X)”, Math. Scand., 33 (1973), 343–358 | DOI | MR

[23] Wermer J., “Bounded point derivations on certain Banach algebras”, J. Funct. Anal., 1 (1967), 28–36 | DOI | MR | Zbl

[24] Ziemer W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Grad. Texts in Math., 120, Springer, Berlin, 1989 | DOI | MR | Zbl