Weak global solvability of the two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables
Algebra i analiz, Tome 31 (2019) no. 2, pp. 118-151.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of quasilinear parabolic systems with nondiagonal principal matrix and strongly nonlinear additional terms is considered. The elliptic operator of the system has a variational structure and is generated by a quadratic functional with a nondiagonal matrix. A plane domain of the spatial variables is divided by a smooth curve in two subdomains and the principal matrix of the system has a “jump” when crossing this curve. The two-phase conditions are given on this curve and the Cauchy-Dirichlet conditions hold at the parabolic boundary of the main parabolic cylinder. The existence of a weak Hölder continuous global solution of the two-phase problem is proved. The problem can be regarded as a construction of the heat flow from a given vector-function to an extremal of the functional.
Keywords: parabolic systems, strong nonlinearity, global solvability.
@article{AA_2019_31_2_a4,
     author = {A. A. Arkhipova},
     title = {Weak global solvability of the two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. {The} case of two spatial variables},
     journal = {Algebra i analiz},
     pages = {118--151},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a4/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - Weak global solvability of the two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables
JO  - Algebra i analiz
PY  - 2019
SP  - 118
EP  - 151
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a4/
LA  - en
ID  - AA_2019_31_2_a4
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T Weak global solvability of the two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables
%J Algebra i analiz
%D 2019
%P 118-151
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a4/
%G en
%F AA_2019_31_2_a4
A. A. Arkhipova. Weak global solvability of the two-phase problem for a class of parabolic systems with strong nonlinearity in the gradient. The case of two spatial variables. Algebra i analiz, Tome 31 (2019) no. 2, pp. 118-151. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a4/

[1] Arkhipova A., “O globalnoi razreshimosti zadachi Koshi–Dirikhle dlya nediagonalnykh parabolicheskikh sistem s variatsionnoi strukturoi pri dvukh prostranstvennykh peremennykh”, Probl. mat. anal., 16 (1997), 3–40

[2] Arkhipova A., “Cauchy–Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities. I. On the continuability of smooth solutions”, Comment. Math. Univ. Carolin., 41:4 (2000), 693–718 | MR | Zbl

[3] Arkhipova A., “Cauchy–Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities. II. Local and global solvability results”, Comment. Math. Univ. Carolin., 42:1 (2001), 53–76 | MR | Zbl

[4] Arkhipova A. A., “O klassicheskoi razreshimosti zadachi Koshi–Dirikhle dlya nediagonalnykh parabolicheskikh sistem v sluchae dvukh prostranstvennykh peremennykh”, Tr. S.-Peterburg. mat. o-va, 9, 2001, 1–19 | Zbl

[5] Arkhipova A. A., “Heat flow for one class of quadratic functionals with a nondiagonal principal matrix. Existence of a smooth global solution”, Algebra i analiz, 30:2 (2018), 45–75 | MR

[6] Arkhipova A., Ladyzhenskaya O. A., “On the inhomogeneous incompressible fluids and reverse Hölder inequalities”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997), 51–67 | MR | Zbl

[7] Arkhipova A. A., Ladyzhenskaya O. A., “Ob odnom obobschenii lemmy Geringa”, Zap. nauch. semin. POMI, 259, 1999, 7–18 | Zbl

[8] Arkhipova A., “Reverse Hölder inequalities with boundary integrals and $L_p$-estimates for solutions of elliptic and parabolic nonlinear boundary-value problems”, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 15–42 | MR | Zbl

[9] Arkhipova A., “Quasireverse Hölder inequalities and a priori estimates for quasilinear elliptic systems”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:2 (2003), 91–108 | MR | Zbl

[10] Arkhipova A., “Quasireverse Hölder inequalities in parabolic metric and their applications”, Amer. Math. Soc. Transl. ser. 2, 220, Amer. Mat. Soc., Providence, RI, 2007, 1–25 | MR | Zbl

[11] Arkhipova A., Stará J., “A priori estimates for quasilinear parabolic systems with quadratic nonlinearity in the gradient”, Comment. Math. Univ. Carolin., 51:4 (2010), 2–16 | MR

[12] Arkhipova A. A., “$L_p$-otsenki gradientov reshenii nachalno-kraevykh zadach dlya kvazilineinykh parabolicheskikh sistem”, Probl. mat. anal., 13, S.-Peterburg. gos. un-t, S.-Peterburg, 1992, 5–18

[13] Specovius-Neigebauer M., Frehse J., “Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growgh behaviour”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55:2 (2009), 239–261 | DOI | MR

[14] Specovius-Neigebauer M., Frehse J., “Morrey estimates and Hölder continuity for solutions to parabolic equations with entropy inequalities”, J. Reine Angew. Math., 638 (2010), 169–188 | MR

[15] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR