Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function
Algebra i analiz, Tome 31 (2019) no. 2, pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss what is known about homogeneous solutions $ u$ to the $ p$-Laplace equation, $ p$ fixed, $ 10$ is $ p$-harmonic in the cone $\displaystyle K(\alpha )=\{x=(x_1,\dots , x_n) : x_1>\cos \alpha \vert x\vert\}\subset \mathbb{R}^n, n\geq 2,$     with continuous boundary value zero on $ \partial K(\alpha ) \setminus \{0\}$ when $ \alpha \in (0,\pi ]$. We also outline a proof of our new result concerning the exact value, $ \lambda =1-(n-1)/p$, for an eigenvalue problem in an ODE associated with $ u$ when $ u$ is $ p$ harmonic in $ K(\pi )$ and $ p>n-1$. Generalizations of this result are stated. Our result complements the work of Krol'-Maz'ya for $ 1$.
Keywords: $p$-Laplacian, boundary Harnack inequalities, homogeneous $p$-harmonic functions, eigenvalue problem.
@article{AA_2019_31_2_a2,
     author = {M. Akman and J. Lewis and A. Vogel},
     title = {Note on an eigenvalue problem for an {ODE} originating from a homogeneous $ p$-harmonic function},
     journal = {Algebra i analiz},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/}
}
TY  - JOUR
AU  - M. Akman
AU  - J. Lewis
AU  - A. Vogel
TI  - Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function
JO  - Algebra i analiz
PY  - 2019
SP  - 75
EP  - 87
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/
LA  - en
ID  - AA_2019_31_2_a2
ER  - 
%0 Journal Article
%A M. Akman
%A J. Lewis
%A A. Vogel
%T Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function
%J Algebra i analiz
%D 2019
%P 75-87
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/
%G en
%F AA_2019_31_2_a2
M. Akman; J. Lewis; A. Vogel. Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function. Algebra i analiz, Tome 31 (2019) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/

[1] Akman M., Gong J., Hineman J., Lewis J., Vogel A., “The Brunn–Minkowski inequality and a Minkowski problem for nonlinear capacity”, Mem. Amer. Math. Soc. (to appear) , arXiv: 1709.00447

[2] Akman M., Lewis J., Saari O., Vogel A., “The Brunn–Minkowski inequality and a Minkowski problem for $\mathcal{A}$-harmonic Green's function”, arXiv: (submitted) 1810.03752

[3] Akman M., Lewis J., Vogel A., Note on an eigenvalue problem with applications to a Minkowski type regularity problem in $\mathbb{R}^3$, in preperation

[4] Aronsson G., “Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=\infty$”, Manuscripta Math., 56:2 (1986), 133–151 | DOI | MR

[5] Colesanti A., Nyström K., Salani, P., Xiao J., Yang D., Zhang G.,, “The {H}adamard variational formula and the {M}inkowski problem for $p$-capacity”, Adv. Math., 285 (2015), 1511–1588 | DOI | MR | Zbl

[6] DeBlassie D., Smits R., “The $p$-harmonic measure of a small spherical cap”, Le Matematiche, 71:1 (2016), 149–171 | MR | Zbl

[7] DeBlassie D., Smits R., “The $p$-harmonic measure of a small axilliary symmetric set”, Potential Anal., 49:4 (2018), 583–608 | DOI | MR | Zbl

[8] Gkikas K., Véron L., “The spherical $p$-harmonic eigenvalue problem in non smooth domains”, J. Funct. Anal., 274:4 (2018), 1155–1176 | DOI | MR | Zbl

[9] Heinonen J., Kilpeläinen T., Martio O.,, Nonlinear potential theory of degenerate elliptic equations, Dover Publ. Inc., Mineola, NY, 2006 | MR | Zbl

[10] Jerison D., “A Minkowski problem for electrostatic capacity”, Acta Math., 176:1 (1996), 1–47 | DOI | MR | Zbl

[11] Jerison D., Kenig C., “Boundary value problems on Lipschitz domains”, Studies in Partial Differential Equations, MAA Stud. Math., 23, Math. Assoc. America, Washington, DC, 1982, 1–68 | MR | Zbl

[12] Krol N. I., “O povedenii reshenii odnogo kvazilineinogo uravneniya vblizi nulevykh zaostrenii granitsy”, Tr. Mat. in-ta AN SSSR, 125, 1973, 140–146 | Zbl

[13] Krol N. I., Mazya V. G., “Ob otsutstvii nepreryvnosti i nepreryvnosti po Gelderu reshenii kvazilineinykh ellipticheskikh uravnenii vblizi neregulyarnoi granitsy”, Tr. mat. o-va, 26, 1972, 75–94 | Zbl

[14] Lewis J., “Smoothness of certain degenerate elliptic equations”, Proc. Amer. Math. Soc., 80:2 (1980), 259–265 | DOI | MR | Zbl

[15] Lewis J., Nyström K., “Boundary behavior for $p$-harmonic functions in Lipschitz and starlike Lipschitz ring domains”, Ann. Sc. École Norm. Sup. (4), 40:4 (2007), 765–813 | DOI | MR | Zbl

[16] Lewis J., Nyström K., “Boundary behaviour and the Martin boundary problem for $p$-harmonic functions in Lipschitz domains”, Ann. Math. (2), 172:3 (2010), 1907–1948 | DOI | MR | Zbl

[17] Lewis J., Nyström K., “Quasi-linear PDEs and low-dimensional sets”, J. Eur. Math. Soc. (JEMS), 20:7 (2018), 1689–1746 | DOI | MR | Zbl

[18] Lewis J., Lundström N., Nyström K., “Boundary Harnack inequalities for operators of $p$-Laplace type in Reifenberg flat domains”, Proc. Sympos. Pure Math., 79, Amer. Math. Soc., Providence, RI, 2008, 229–266 | DOI | MR | Zbl

[19] Lewis J., Vogel A., “On $p$-Laplace polynomial solutions”, J. Anal., 24:1 (2016), 143–166 | DOI | MR | Zbl

[20] Lundstrom N., Vasilis J., “Decay of $p$-harmonic measure in the plane”, Ann. Acad. Sci. Fenn. Math., 38:1 (2013), 351–356 | DOI | MR

[21] Llorente J. G., Manfredi J. J., Troy W. C., Wu J. M., On $p$-harmonic measures in half spaces, preprint

[22] Maz'ya V. G., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[23] Tkachev V., “On the nonvanishing property of real analytic solutions to the $p$-Laplace equation”, Proc. Amer. Math. Soc., 144:6 (2016), 2375–2382 | DOI | MR | Zbl

[24] Tkachev V., New explicit solutions of the $p$-Laplace equation based on isoparametric foliations, arXiv: 1802.09892

[25] Tolksdorf P., “On the Dirichlet problem for quasilinear elliptic equations in domains with conical boundary points”, Comm. Partial Differential Equations, 8:7 (1983), 773–817 | DOI | MR | Zbl

[26] Porretta A., Véron L., “Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds”, J. Eur. Math. Soc. (JEMS), 11:6 (2009), 1285–1305 | DOI | MR | Zbl

[27] Venouziou M., Verchota G., “The mixed problem for harmonic functions in polyhedra of $\mathbb{R}^3$”, Perspectives in partial differential equations, harmonic analysis and applications, Proc. Sympos. Pure Math., 79, Amer. Math. Soc., Providence, RI, 2008, 407–423 | DOI | MR