Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_2_a2, author = {M. Akman and J. Lewis and A. Vogel}, title = {Note on an eigenvalue problem for an {ODE} originating from a homogeneous $ p$-harmonic function}, journal = {Algebra i analiz}, pages = {75--87}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/} }
TY - JOUR AU - M. Akman AU - J. Lewis AU - A. Vogel TI - Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function JO - Algebra i analiz PY - 2019 SP - 75 EP - 87 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/ LA - en ID - AA_2019_31_2_a2 ER -
M. Akman; J. Lewis; A. Vogel. Note on an eigenvalue problem for an ODE originating from a homogeneous $ p$-harmonic function. Algebra i analiz, Tome 31 (2019) no. 2, pp. 75-87. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a2/
[1] Akman M., Gong J., Hineman J., Lewis J., Vogel A., “The Brunn–Minkowski inequality and a Minkowski problem for nonlinear capacity”, Mem. Amer. Math. Soc. (to appear) , arXiv: 1709.00447
[2] Akman M., Lewis J., Saari O., Vogel A., “The Brunn–Minkowski inequality and a Minkowski problem for $\mathcal{A}$-harmonic Green's function”, arXiv: (submitted) 1810.03752
[3] Akman M., Lewis J., Vogel A., Note on an eigenvalue problem with applications to a Minkowski type regularity problem in $\mathbb{R}^3$, in preperation
[4] Aronsson G., “Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=\infty$”, Manuscripta Math., 56:2 (1986), 133–151 | DOI | MR
[5] Colesanti A., Nyström K., Salani, P., Xiao J., Yang D., Zhang G.,, “The {H}adamard variational formula and the {M}inkowski problem for $p$-capacity”, Adv. Math., 285 (2015), 1511–1588 | DOI | MR | Zbl
[6] DeBlassie D., Smits R., “The $p$-harmonic measure of a small spherical cap”, Le Matematiche, 71:1 (2016), 149–171 | MR | Zbl
[7] DeBlassie D., Smits R., “The $p$-harmonic measure of a small axilliary symmetric set”, Potential Anal., 49:4 (2018), 583–608 | DOI | MR | Zbl
[8] Gkikas K., Véron L., “The spherical $p$-harmonic eigenvalue problem in non smooth domains”, J. Funct. Anal., 274:4 (2018), 1155–1176 | DOI | MR | Zbl
[9] Heinonen J., Kilpeläinen T., Martio O.,, Nonlinear potential theory of degenerate elliptic equations, Dover Publ. Inc., Mineola, NY, 2006 | MR | Zbl
[10] Jerison D., “A Minkowski problem for electrostatic capacity”, Acta Math., 176:1 (1996), 1–47 | DOI | MR | Zbl
[11] Jerison D., Kenig C., “Boundary value problems on Lipschitz domains”, Studies in Partial Differential Equations, MAA Stud. Math., 23, Math. Assoc. America, Washington, DC, 1982, 1–68 | MR | Zbl
[12] Krol N. I., “O povedenii reshenii odnogo kvazilineinogo uravneniya vblizi nulevykh zaostrenii granitsy”, Tr. Mat. in-ta AN SSSR, 125, 1973, 140–146 | Zbl
[13] Krol N. I., Mazya V. G., “Ob otsutstvii nepreryvnosti i nepreryvnosti po Gelderu reshenii kvazilineinykh ellipticheskikh uravnenii vblizi neregulyarnoi granitsy”, Tr. mat. o-va, 26, 1972, 75–94 | Zbl
[14] Lewis J., “Smoothness of certain degenerate elliptic equations”, Proc. Amer. Math. Soc., 80:2 (1980), 259–265 | DOI | MR | Zbl
[15] Lewis J., Nyström K., “Boundary behavior for $p$-harmonic functions in Lipschitz and starlike Lipschitz ring domains”, Ann. Sc. École Norm. Sup. (4), 40:4 (2007), 765–813 | DOI | MR | Zbl
[16] Lewis J., Nyström K., “Boundary behaviour and the Martin boundary problem for $p$-harmonic functions in Lipschitz domains”, Ann. Math. (2), 172:3 (2010), 1907–1948 | DOI | MR | Zbl
[17] Lewis J., Nyström K., “Quasi-linear PDEs and low-dimensional sets”, J. Eur. Math. Soc. (JEMS), 20:7 (2018), 1689–1746 | DOI | MR | Zbl
[18] Lewis J., Lundström N., Nyström K., “Boundary Harnack inequalities for operators of $p$-Laplace type in Reifenberg flat domains”, Proc. Sympos. Pure Math., 79, Amer. Math. Soc., Providence, RI, 2008, 229–266 | DOI | MR | Zbl
[19] Lewis J., Vogel A., “On $p$-Laplace polynomial solutions”, J. Anal., 24:1 (2016), 143–166 | DOI | MR | Zbl
[20] Lundstrom N., Vasilis J., “Decay of $p$-harmonic measure in the plane”, Ann. Acad. Sci. Fenn. Math., 38:1 (2013), 351–356 | DOI | MR
[21] Llorente J. G., Manfredi J. J., Troy W. C., Wu J. M., On $p$-harmonic measures in half spaces, preprint
[22] Maz'ya V. G., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[23] Tkachev V., “On the nonvanishing property of real analytic solutions to the $p$-Laplace equation”, Proc. Amer. Math. Soc., 144:6 (2016), 2375–2382 | DOI | MR | Zbl
[24] Tkachev V., New explicit solutions of the $p$-Laplace equation based on isoparametric foliations, arXiv: 1802.09892
[25] Tolksdorf P., “On the Dirichlet problem for quasilinear elliptic equations in domains with conical boundary points”, Comm. Partial Differential Equations, 8:7 (1983), 773–817 | DOI | MR | Zbl
[26] Porretta A., Véron L., “Separable $p$-harmonic functions in a cone and related quasilinear equations on manifolds”, J. Eur. Math. Soc. (JEMS), 11:6 (2009), 1285–1305 | DOI | MR | Zbl
[27] Venouziou M., Verchota G., “The mixed problem for harmonic functions in polyhedra of $\mathbb{R}^3$”, Perspectives in partial differential equations, harmonic analysis and applications, Proc. Sympos. Pure Math., 79, Amer. Math. Soc., Providence, RI, 2008, 407–423 | DOI | MR