Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs
Algebra i analiz, Tome 31 (2019) no. 2, pp. 51-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we address the following question: Why certain nonassociative algebra structures emerge in the regularity theory of elliptic type PDEs and also in constructing nonclassical and singular solutions? Our aim in the paper is twofold. First, to give a survey of diverse examples on nonregular solutions to elliptic PDEs with emphasis on recent results on nonclassical solutions to fully nonlinear equations. Second, to define an appropriate algebraic formalism, which makes the analytic part of the construction of nonclassical solutions more transparent.
Keywords: viscosity solutions, elliptic type PDEs, compositions algebras.
@article{AA_2019_31_2_a1,
     author = {V. G. Tkachev},
     title = {Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type {PDEs}},
     journal = {Algebra i analiz},
     pages = {51--74},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/}
}
TY  - JOUR
AU  - V. G. Tkachev
TI  - Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs
JO  - Algebra i analiz
PY  - 2019
SP  - 51
EP  - 74
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/
LA  - en
ID  - AA_2019_31_2_a1
ER  - 
%0 Journal Article
%A V. G. Tkachev
%T Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs
%J Algebra i analiz
%D 2019
%P 51-74
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/
%G en
%F AA_2019_31_2_a1
V. G. Tkachev. Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs. Algebra i analiz, Tome 31 (2019) no. 2, pp. 51-74. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/

[1] Akman M., Lewis J., Vogel A., “Note on an eigenvalue problem for an ode originating from a homogeneous $p$-harmonic function”, Algebra i analiz, 31:2 (2019), 3–15

[2] Aleksandrov A. D., “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, Dokl. AN SSSR, 22:3 (1939), 99–102

[3] Armstrong S., Silvestre L., Smart C., “Partial regularity of solutions of fully nonlinear, uniformly elliptic equations”, Comm. Pure Appl. Math., 65:8 (2012), 1169–1184 | DOI | MR | Zbl

[4] Aronsson G., “Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=\infty$”, Manuscripta Math., 56:2 (1986), 135–158 | DOI | MR

[5] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR | Zbl

[6] Bombieri E., De Giorgi E., Giusti E., “Minimal cones and the Bernstein problem”, Invent. Math., 7 (1969), 243–268 | DOI | MR | Zbl

[7] Caffarelli L., “Interior a priori estimates for solutions of fully nonlinear equations”, Ann. of Math., 130:1 (1989), 189–213 | DOI | MR | Zbl

[8] Cartan É., “Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques”, Math. Z., 45 (1939), 335–367 | DOI | MR

[9] Cecil Th. E., Ryan P. J., Geometry of hypersurfaces, Springer Monogr. Math., Springer, New York, 2015 | DOI | MR | Zbl

[10] Cordes H. O., “Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen”, Math. Ann., 131 (1956), 278–312 | DOI | MR | Zbl

[11] Crandall M. G., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27:1 (1992), 1–67 | DOI | MR | Zbl

[12] Cutkosky S. D., Resolution of singularities, Grad. Stud. in Math., 63, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[13] Daskalopoulos P., Kuusi T., Mingione G., “Borderline estimates for fully nonlinear elliptic equations”, Comm. Partial Differential Equations, 39:3 (2014), 574–590 | DOI | MR | Zbl

[14] De Giorgi E., “Un esempio di estremali discontinue per un problema variazionale di tipo ellittico”, Boll. Un. Mat. Ital. (4), 1 (1968), 135–137 | MR | Zbl

[15] Evans L. C., “A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e”, J. Differential Equations, 45:3 (1982), 356–373 | DOI | MR | Zbl

[16] Farina A., “Two results on entire solutions of Ginzburg–Landau system in higher dimensions”, J. Funct. Anal., 214:2 (2004), 386–395 | DOI | MR | Zbl

[17] Giusti G., Miranda M., “Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni”, Boll. Un. Mat. Ital. (4), 1 (1968), 219–226 | MR | Zbl

[18] Hall J. I., Segev Y., Shpectorov S., “Miyamoto involutions in axial algebras of Jordan type half”, Israel J. Math., 223:1 (2018), 261–308 | DOI | MR | Zbl

[19] Harvey F. R., Lawson H. B., Jr., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl

[20] Harvey F. R., Lawson H. B., Jr., “Dirichlet duality and the nonlinear Dirichlet problem”, Comm. Pure Appl. Math., 62:3 (2009), 396–443 | DOI | MR | Zbl

[21] Wu-yi Hsiang, “Remarks on closed minimal submanifolds in the standard Riemannian $m$-sphere”, J. Differential Geometry, 1 (1967), 257–267 | DOI | MR

[22] Imbert C., Silvestre L., “Estimates on elliptic equations that hold only where the gradient is large”, J. Eur. Math. Soc. (JEMS), 18:6 (2016), 1321–1338 | DOI | MR | Zbl

[23] Jacobson N., Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publ., 39, Amer. Math. Soc., Providence, R.I., 1968 | MR | Zbl

[24] Jordan P., von Neumann J., Wigner E., “On an algebraic generalization of the quantum mechanical formalism”, Ann. of Math. (2), 35:1 (1934), 29–64 | DOI | MR

[25] Krasnov Ya., Tkachev V. G., “Variety of idempotents in nonassociative algebras”, Topics in Clifford Analysis, A Special Volume in Honor of Wolfgang Sprössig, Trends Math., Birkhäuser/Springer, 2019

[26] Krol I. N., Mazya V. G., “Ob otsutstvii nepreryvnosti i nepreryvnosti po Gelderu reshenii kvazilineinykh ellipticheskikh uravnenii vbltzi neregulyarnoi granitsy”, Tr. Mosk. mat. o-va, 26, 1972, 75–94 | Zbl

[27] Krylov N. V., Safonov M. V., “Otsenka veroyatnosti popadaniya diffuznogo protsessa v mnozhestvo polozhitelnoi mery”, Dokl. AN SSSR, 245:1 (1979), 18–20 | MR

[28] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 161–175 | MR | Zbl

[29] Lawson H. B., Jr., Osserman R., “Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system”, Acta Math., 139:1–2 (1977), 1–17 | DOI | MR | Zbl

[30] Lewis J. L., “Capacitary functions in convex rings”, Arch. Rational Mech. Anal., 66:3 (1977), 201–224 | DOI | MR | Zbl

[31] Mazya V. G., “Primery neregulyarnykh reshenii kvazilineinykh ellipticheskikh uravnenii s analiticheskimi koeffitsientami”, Funkts. anal. i ego pril., 2:3 (1968), 53–57 | MR | Zbl

[32] McCrimmon K., A taste of Jordan algebras, Universitext, Springer, New York, 2004 | MR | Zbl

[33] Mingione G., “Regularity of minima: an invitation to the dark side of the calculus of variations”, Appl. Math., 51:4 (2006), 355–426 | DOI | MR

[34] Münzner H. F., “Isoparametrische Hyperflächen in Sphären”, Math. Ann., 251:1 (1980), 57–71 | DOI | MR

[35] Nadirashvili N., Tkachev V. G., Vl{ă}du{ţ} S., “A non-classical solution to a Hessian equation from Cartan isoparametric cubic”, Adv. Math., 231:3–4 (2012), 1589–1597 | DOI | MR | Zbl

[36] Nadirashvili N., Tkachev V. G., Vl{ă}du{ţ} S., Nonlinear elliptic equations and nonassociative algebras, Math. Surveys Monogr., 200, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl

[37] Nadirashvili N., Vl{ă}du{ţ} S., “Nonclassical solutions of fully nonlinear elliptic equations”, Geom. Funct. Anal., 17:4 (2007), 1283–1296 | DOI | MR | Zbl

[38] Nadirashvili N., Vl{ă}du{ţ} S., “Singular viscosity solutions to fully nonlinear elliptic equations”, J. Math. Pures Appl. (9), 89:2 (2008), 107–113 | DOI | MR | Zbl

[39] Nadirashvili N., Vl{ă}du{ţ} S., “Weak solutions of nonvariational elliptic equations”, Proc. Internat. Congress of Mathematicians, v. III, Hindustan Book Agency, New Delhi, 2010, 2001–2018 | MR

[40] Nadirashvili N., Vl{ă}du{ţ} S., “Octonions and singular solutions of Hessian elliptic equations”, Geom. Funct. Anal., 21:2 (2011), 483–498 | DOI | MR | Zbl

[41] Nadirashvili N., Vl{ă}du{ţ} S., “Singular solutions of Hessian fully nonlinear elliptic equations”, Adv. Math., 228:3 (2011), 1718–1741 | DOI | MR | Zbl

[42] Nadirashvili N., Vl{ă}du{ţ} S., “Homogeneous solutions of fully nonlinear elliptic equations in four dimensions”, Comm. Pure Appl. Math., 66:10 (2013), 1653–1662 | DOI | MR | Zbl

[43] Nadirashvili N., Vl{ă}du{ţ} S., “Singular solutions of Hessian elliptic equations in five dimensions”, J. Math. Pures Appl. (9), 100:6 (2013), 769–784 | DOI | MR | Zbl

[44] Nirenberg L., “On nonlinear elliptic partial differential equations and Hölder continuity”, Comm. Pure Appl. Math., 6 (1953), 103–156 ; addendum, 395 | DOI | MR | Zbl

[45] Ovsienko V., Tabachnikov S., “Hopf fibrations and Hurwitz–Radon numbers”, Math. Intell., 38:4 (2016), 11–18 | DOI | MR | Zbl

[46] Savin O., “Phase transitions, minimal surfaces and a conjecture of De Giorgi”, Current Developments in Math. (2009), Int. Press, Somerville, MA, 2010, 59–113 | MR | Zbl

[47] Schafer R. D., An introduction to nonassociative algebras, Pure Appl. Math., 22, Acad. Press, New York, 1966 | MR | Zbl

[48] Segre B., “Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di demesioni”, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21 (1938), 203–207

[49] Simon L., “Entire solutions of the minimal surface equation”, J. Differential Geom., 30:3 (1989), 643–688 | DOI | MR | Zbl

[50] Simon L., Solomon B., “Minimal hypersurfaces asymptotic to quadratic cones in $\mathbf{R}^{n+1}$”, Invent. Math., 86:3 (1986), 535–551 | DOI | MR | Zbl

[51] Teixeira E. V., “Universal moduli of continuity for solutions to fully nonlinear elliptic equations”, Arch. Ration. Mech. Anal., 211:3 (2014), 911–927 | DOI | MR | Zbl

[52] Tkachev V. G., “A Jordan algebra approach to the cubic eiconal equation”, J. Algebra, 419 (2014), 34–51 | DOI | MR | Zbl

[53] Tkachev V. G., “On the nonvanishing property for real analytic solutions of the $p$-Laplace equation”, Proc. Amer. Math. Soc., 144:6 (2016), 2375–2382 | DOI | MR | Zbl

[54] Tkachev V. G., “A correction of the decomposability result in a paper by Meyer–Neutsch”, J. Algebra, 504 (2018), 432–439 | DOI | MR | Zbl

[55] Tkachev V. G., New explicit solutions to the $p$-Laplace equation based on isoparametric foliations, 2018, arXiv: 1802.09892

[56] Tkachev V. G., “On an extremal property of Jordan algebras of Clifford type”, Comm. Algebra, 46:12 (2018)

[57] Tkachev V. G., “The universality of one half in commutative nonassociative algebras with identities”, J. Algebra, 2019 (to appear) | Zbl

[58] Trudinger N. S., “On the twice differentiability of viscosity solutions of nonlinear elliptic equations”, Bull. Austral. Math. Soc., 39:3 (1989), 443–447 | DOI | MR | Zbl

[59] Uraltseva N. N., “Vyrozhdayuschiesya kvazilineinye ellipticheskie sistemy”, Zap. nauch. semin. LOMI, 7, 1968, 184–222