Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_2_a1, author = {V. G. Tkachev}, title = {Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type {PDEs}}, journal = {Algebra i analiz}, pages = {51--74}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/} }
TY - JOUR AU - V. G. Tkachev TI - Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs JO - Algebra i analiz PY - 2019 SP - 51 EP - 74 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/ LA - en ID - AA_2019_31_2_a1 ER -
V. G. Tkachev. Spectral properties of nonassociative algebras and breaking regularity for nonlinear elliptic type PDEs. Algebra i analiz, Tome 31 (2019) no. 2, pp. 51-74. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a1/
[1] Akman M., Lewis J., Vogel A., “Note on an eigenvalue problem for an ode originating from a homogeneous $p$-harmonic function”, Algebra i analiz, 31:2 (2019), 3–15
[2] Aleksandrov A. D., “O teoremakh edinstvennosti dlya zamknutykh poverkhnostei”, Dokl. AN SSSR, 22:3 (1939), 99–102
[3] Armstrong S., Silvestre L., Smart C., “Partial regularity of solutions of fully nonlinear, uniformly elliptic equations”, Comm. Pure Appl. Math., 65:8 (2012), 1169–1184 | DOI | MR | Zbl
[4] Aronsson G., “Construction of singular solutions to the $p$-harmonic equation and its limit equation for $p=\infty$”, Manuscripta Math., 56:2 (1986), 135–158 | DOI | MR
[5] Baez J. C., “The octonions”, Bull. Amer. Math. Soc., 39:2 (2002), 145–205 | DOI | MR | Zbl
[6] Bombieri E., De Giorgi E., Giusti E., “Minimal cones and the Bernstein problem”, Invent. Math., 7 (1969), 243–268 | DOI | MR | Zbl
[7] Caffarelli L., “Interior a priori estimates for solutions of fully nonlinear equations”, Ann. of Math., 130:1 (1989), 189–213 | DOI | MR | Zbl
[8] Cartan É., “Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques”, Math. Z., 45 (1939), 335–367 | DOI | MR
[9] Cecil Th. E., Ryan P. J., Geometry of hypersurfaces, Springer Monogr. Math., Springer, New York, 2015 | DOI | MR | Zbl
[10] Cordes H. O., “Über die erste Randwertaufgabe bei quasilinearen Differentialgleichungen zweiter Ordnung in mehr als zwei Variablen”, Math. Ann., 131 (1956), 278–312 | DOI | MR | Zbl
[11] Crandall M. G., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27:1 (1992), 1–67 | DOI | MR | Zbl
[12] Cutkosky S. D., Resolution of singularities, Grad. Stud. in Math., 63, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[13] Daskalopoulos P., Kuusi T., Mingione G., “Borderline estimates for fully nonlinear elliptic equations”, Comm. Partial Differential Equations, 39:3 (2014), 574–590 | DOI | MR | Zbl
[14] De Giorgi E., “Un esempio di estremali discontinue per un problema variazionale di tipo ellittico”, Boll. Un. Mat. Ital. (4), 1 (1968), 135–137 | MR | Zbl
[15] Evans L. C., “A new proof of local $C^{1,\alpha }$ regularity for solutions of certain degenerate elliptic p.d.e”, J. Differential Equations, 45:3 (1982), 356–373 | DOI | MR | Zbl
[16] Farina A., “Two results on entire solutions of Ginzburg–Landau system in higher dimensions”, J. Funct. Anal., 214:2 (2004), 386–395 | DOI | MR | Zbl
[17] Giusti G., Miranda M., “Un esempio di soluzioni discontinue per un problema di minimo relativo ad un integrale regolare del calcolo delle variazioni”, Boll. Un. Mat. Ital. (4), 1 (1968), 219–226 | MR | Zbl
[18] Hall J. I., Segev Y., Shpectorov S., “Miyamoto involutions in axial algebras of Jordan type half”, Israel J. Math., 223:1 (2018), 261–308 | DOI | MR | Zbl
[19] Harvey F. R., Lawson H. B., Jr., “Calibrated geometries”, Acta Math., 148 (1982), 47–157 | DOI | MR | Zbl
[20] Harvey F. R., Lawson H. B., Jr., “Dirichlet duality and the nonlinear Dirichlet problem”, Comm. Pure Appl. Math., 62:3 (2009), 396–443 | DOI | MR | Zbl
[21] Wu-yi Hsiang, “Remarks on closed minimal submanifolds in the standard Riemannian $m$-sphere”, J. Differential Geometry, 1 (1967), 257–267 | DOI | MR
[22] Imbert C., Silvestre L., “Estimates on elliptic equations that hold only where the gradient is large”, J. Eur. Math. Soc. (JEMS), 18:6 (2016), 1321–1338 | DOI | MR | Zbl
[23] Jacobson N., Structure and representations of Jordan algebras, Amer. Math. Soc. Coll. Publ., 39, Amer. Math. Soc., Providence, R.I., 1968 | MR | Zbl
[24] Jordan P., von Neumann J., Wigner E., “On an algebraic generalization of the quantum mechanical formalism”, Ann. of Math. (2), 35:1 (1934), 29–64 | DOI | MR
[25] Krasnov Ya., Tkachev V. G., “Variety of idempotents in nonassociative algebras”, Topics in Clifford Analysis, A Special Volume in Honor of Wolfgang Sprössig, Trends Math., Birkhäuser/Springer, 2019
[26] Krol I. N., Mazya V. G., “Ob otsutstvii nepreryvnosti i nepreryvnosti po Gelderu reshenii kvazilineinykh ellipticheskikh uravnenii vbltzi neregulyarnoi granitsy”, Tr. Mosk. mat. o-va, 26, 1972, 75–94 | Zbl
[27] Krylov N. V., Safonov M. V., “Otsenka veroyatnosti popadaniya diffuznogo protsessa v mnozhestvo polozhitelnoi mery”, Dokl. AN SSSR, 245:1 (1979), 18–20 | MR
[28] Krylov N. V., Safonov M. V., “Nekotoroe svoistvo reshenii parabolicheskikh uravnenii s izmerimymi koeffitsientami”, Izv. AN SSSR. Ser. mat., 44:1 (1980), 161–175 | MR | Zbl
[29] Lawson H. B., Jr., Osserman R., “Non-existence, non-uniqueness and irregularity of solutions to the minimal surface system”, Acta Math., 139:1–2 (1977), 1–17 | DOI | MR | Zbl
[30] Lewis J. L., “Capacitary functions in convex rings”, Arch. Rational Mech. Anal., 66:3 (1977), 201–224 | DOI | MR | Zbl
[31] Mazya V. G., “Primery neregulyarnykh reshenii kvazilineinykh ellipticheskikh uravnenii s analiticheskimi koeffitsientami”, Funkts. anal. i ego pril., 2:3 (1968), 53–57 | MR | Zbl
[32] McCrimmon K., A taste of Jordan algebras, Universitext, Springer, New York, 2004 | MR | Zbl
[33] Mingione G., “Regularity of minima: an invitation to the dark side of the calculus of variations”, Appl. Math., 51:4 (2006), 355–426 | DOI | MR
[34] Münzner H. F., “Isoparametrische Hyperflächen in Sphären”, Math. Ann., 251:1 (1980), 57–71 | DOI | MR
[35] Nadirashvili N., Tkachev V. G., Vl{ă}du{ţ} S., “A non-classical solution to a Hessian equation from Cartan isoparametric cubic”, Adv. Math., 231:3–4 (2012), 1589–1597 | DOI | MR | Zbl
[36] Nadirashvili N., Tkachev V. G., Vl{ă}du{ţ} S., Nonlinear elliptic equations and nonassociative algebras, Math. Surveys Monogr., 200, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl
[37] Nadirashvili N., Vl{ă}du{ţ} S., “Nonclassical solutions of fully nonlinear elliptic equations”, Geom. Funct. Anal., 17:4 (2007), 1283–1296 | DOI | MR | Zbl
[38] Nadirashvili N., Vl{ă}du{ţ} S., “Singular viscosity solutions to fully nonlinear elliptic equations”, J. Math. Pures Appl. (9), 89:2 (2008), 107–113 | DOI | MR | Zbl
[39] Nadirashvili N., Vl{ă}du{ţ} S., “Weak solutions of nonvariational elliptic equations”, Proc. Internat. Congress of Mathematicians, v. III, Hindustan Book Agency, New Delhi, 2010, 2001–2018 | MR
[40] Nadirashvili N., Vl{ă}du{ţ} S., “Octonions and singular solutions of Hessian elliptic equations”, Geom. Funct. Anal., 21:2 (2011), 483–498 | DOI | MR | Zbl
[41] Nadirashvili N., Vl{ă}du{ţ} S., “Singular solutions of Hessian fully nonlinear elliptic equations”, Adv. Math., 228:3 (2011), 1718–1741 | DOI | MR | Zbl
[42] Nadirashvili N., Vl{ă}du{ţ} S., “Homogeneous solutions of fully nonlinear elliptic equations in four dimensions”, Comm. Pure Appl. Math., 66:10 (2013), 1653–1662 | DOI | MR | Zbl
[43] Nadirashvili N., Vl{ă}du{ţ} S., “Singular solutions of Hessian elliptic equations in five dimensions”, J. Math. Pures Appl. (9), 100:6 (2013), 769–784 | DOI | MR | Zbl
[44] Nirenberg L., “On nonlinear elliptic partial differential equations and Hölder continuity”, Comm. Pure Appl. Math., 6 (1953), 103–156 ; addendum, 395 | DOI | MR | Zbl
[45] Ovsienko V., Tabachnikov S., “Hopf fibrations and Hurwitz–Radon numbers”, Math. Intell., 38:4 (2016), 11–18 | DOI | MR | Zbl
[46] Savin O., “Phase transitions, minimal surfaces and a conjecture of De Giorgi”, Current Developments in Math. (2009), Int. Press, Somerville, MA, 2010, 59–113 | MR | Zbl
[47] Schafer R. D., An introduction to nonassociative algebras, Pure Appl. Math., 22, Acad. Press, New York, 1966 | MR | Zbl
[48] Segre B., “Famiglie di ipersuperficie isoparametrische negli spazi euclidei ad un qualunque numero di demesioni”, Atti. Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 21 (1938), 203–207
[49] Simon L., “Entire solutions of the minimal surface equation”, J. Differential Geom., 30:3 (1989), 643–688 | DOI | MR | Zbl
[50] Simon L., Solomon B., “Minimal hypersurfaces asymptotic to quadratic cones in $\mathbf{R}^{n+1}$”, Invent. Math., 86:3 (1986), 535–551 | DOI | MR | Zbl
[51] Teixeira E. V., “Universal moduli of continuity for solutions to fully nonlinear elliptic equations”, Arch. Ration. Mech. Anal., 211:3 (2014), 911–927 | DOI | MR | Zbl
[52] Tkachev V. G., “A Jordan algebra approach to the cubic eiconal equation”, J. Algebra, 419 (2014), 34–51 | DOI | MR | Zbl
[53] Tkachev V. G., “On the nonvanishing property for real analytic solutions of the $p$-Laplace equation”, Proc. Amer. Math. Soc., 144:6 (2016), 2375–2382 | DOI | MR | Zbl
[54] Tkachev V. G., “A correction of the decomposability result in a paper by Meyer–Neutsch”, J. Algebra, 504 (2018), 432–439 | DOI | MR | Zbl
[55] Tkachev V. G., New explicit solutions to the $p$-Laplace equation based on isoparametric foliations, 2018, arXiv: 1802.09892
[56] Tkachev V. G., “On an extremal property of Jordan algebras of Clifford type”, Comm. Algebra, 46:12 (2018)
[57] Tkachev V. G., “The universality of one half in commutative nonassociative algebras with identities”, J. Algebra, 2019 (to appear) | Zbl
[58] Trudinger N. S., “On the twice differentiability of viscosity solutions of nonlinear elliptic equations”, Bull. Austral. Math. Soc., 39:3 (1989), 443–447 | DOI | MR | Zbl
[59] Uraltseva N. N., “Vyrozhdayuschiesya kvazilineinye ellipticheskie sistemy”, Zap. nauch. semin. LOMI, 7, 1968, 184–222