Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_2_a0, author = {J. M. Martell and D. Mitrea and I. Mitrea and M. Mitrea}, title = {Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space}, journal = {Algebra i analiz}, pages = {3--50}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_2_a0/} }
TY - JOUR AU - J. M. Martell AU - D. Mitrea AU - I. Mitrea AU - M. Mitrea TI - Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space JO - Algebra i analiz PY - 2019 SP - 3 EP - 50 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_2_a0/ LA - en ID - AA_2019_31_2_a0 ER -
%0 Journal Article %A J. M. Martell %A D. Mitrea %A I. Mitrea %A M. Mitrea %T Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space %J Algebra i analiz %D 2019 %P 3-50 %V 31 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2019_31_2_a0/ %G en %F AA_2019_31_2_a0
J. M. Martell; D. Mitrea; I. Mitrea; M. Mitrea. Fatou-type theorems and boundary value problems for elliptic systems in the upper half-space. Algebra i analiz, Tome 31 (2019) no. 2, pp. 3-50. http://geodesic.mathdoc.fr/item/AA_2019_31_2_a0/
[1] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I”, Comm. Pure Appl. Math., 12 (1959), 623–727 | DOI | MR | Zbl
[2] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl
[3] Axler S., Bourdon P., Ramey W., Harmonic function theory, Grad. Texts in Math., 137, 2nd ed., Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[4] Bourdaud G., “Remarks on some subspaces of $BMO({\mathbb{R}}^n)$ and of $bmo({\mathbb{R}}^n)$”, Ann. Inst. Fourier, 52:4 (2002), 1187–1218 | DOI | MR | Zbl
[5] Chiarenza F., Frasca M., “Morrey spaces and Hardy–Littlewood maximal function”, Rend. Mat. Appl. (7), 1987, no. 3–4, 273–279 | MR | Zbl
[6] Coifman R. R., Weiss G., “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl
[7] Duoandikoetxea J., Fourier analysis, Grad. Stud. Math., 29, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[8] Fefferman C., “Characterizations of bounded mean oscillation”, Bull. Amer. Math. Soc., 77 (1971), 587–588 | DOI | MR | Zbl
[9] Fefferman C., Stein E. M., “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl
[10] Franke J., Runst T., “Regular elliptic boundary value problems in Besov-Triebel-Lizorkin spaces”, Math. Nachr., 174 (1995), 113–149 | DOI | MR | Zbl
[11] García-Cuerva J., Rubio de Francia J., Weighted norm inequalities and related topics, North-Holland Math. Stud., 116, North-Holland Publ. Co., Amsterdam, 1985 | MR | Zbl
[12] Gel'man I. V., Maz'ya V. G., Abschätzungen für Differentialoperatoren im Halbraum, Math. Monogr., 54, Akademie-Verlag, Berlin, 1981 | Zbl
[13] Johnsen J., “Elliptic boundary value problems and the Boutet de Monvel calculus in Besov and Triebel-Lizorkin spaces”, Math. Scand., 79 (1996), 25–85 | DOI | MR | Zbl
[14] Kresin G., Maz'ya V. G., Maximum principles and sharp constants for solutions of elliptic and parabolic systems, Math. Surveys Monogr., 183, Amer. Math. Soc., Providence, RI, 2012 | DOI | MR | Zbl
[15] Kozlov V. A., Maz'ya V. G., Rossmann J., Elliptic boundary value problems in domains with point singularities, Math. Surveys Monogr., 52, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl
[16] Kozlov V. A., Maz'ya V. G., Rossmann J., Spectral problems associated with corner singularities of solutions to elliptic equations, Math. Surveys Monogr., 85, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl
[17] Lions J. L., Magenes E., Non-homogeneous boundary value problems and applications, v. I, Grundlehren Math. Wiss., 181 ; v. II, Grundlehren Math. Wiss., 182, Springer, Berlin–Heidelberg, 1972 | MR | Zbl | Zbl
[18] Lopatinskii Ya. B., “Ob odnom sposobe privedeniya granichnykh zadach dlya sistemy differentsialnykh uravnenii ellipticheskogo tipa k regulyarnym”, Ukr. mat. zh., 5 (1953), 123–151
[19] Marín J. J., Martell J. M., Mitrea D., Mitrea I., Mitrea M., A Fatou theorem and Poisson's integral representation formula for elliptic systems in the upper half-space, preprint, 2018
[20] Marín J. J., Martell J. M., Mitrea M., The generalized Hölder and Morrey-Campanato Dirichlet problems for elliptic systems in the upper half-space, preprint, 2018
[21] Martell J. M., Mitrea D., Mitrea I., Mitrea M., “The higher order regularity Dirichlet problem for elliptic systems in the upper half-space”, Harmonic Analysis and Partial Differential Equations, Contemp. Math., 612, Amer. Math. Soc., Providence, RI, 2014, 123–141 | DOI | MR | Zbl
[22] Martell J. M., Mitrea D., Mitrea I., Mitrea M., “The Dirichlet problem for elliptic systems with data in Köthe function spaces”, Rev. Mat. Iberoam., 32:3 (2016), 913–970 | DOI | MR | Zbl
[23] Martell J. M., Mitrea D., Mitrea I., Mitrea M., “On the $L^p$-Poisson semigroup associated with elliptic systems”, Potential Anal., 47:4 (2017), 401–445 | DOI | MR | Zbl
[24] Martell J. M., Mitrea D., Mitrea I., Mitrea M., “The BMO-Dirichlet problem for elliptic systems in the upper half-space and quantitative characterizations of VMO”, Anal. PDE, 12:3 (2019), 605–720 | DOI | MR | Zbl
[25] Martell J. M., Mitrea D., Mitrea I., Mitrea M., The Dirichlet problem for elliptic systems for data with subcritical growth, preprint, 2018 | MR
[26] Martell J. M., Mitrea D., Mitrea I., Mitrea M., Boundary value problems for elliptic systems in the upper half-space, book manuscript, 2018
[27] Maz'ya V. G., Mitrea M., Shaposhnikova T., “The Dirichlet problem in Lipschitz domains with boundary data in Besov spaces for higher order elliptic systems with rough coefficients”, J. Anal. Math., 110:1 (2010), 167–239 | DOI | MR | Zbl
[28] Maz'ya V. G., Shaposhnikova T. O., Theory of multipliers in spaces of differentiable functions, Monogr. Stud. Math., 23, Pitman Advanced Publ. Program, Boston, MA, 1985 | MR | Zbl
[29] Neri U., “Fractional integration on the space $H^1$ and its dual”, Studia Math., 53:2 (1975), 175–189 | DOI | MR | Zbl
[30] Runst T., Sickel W., Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential operators, de Gruyter Ser. Nonlinear Anal. Appl., 3, Walter de Gruyter, Berlin, 1996 | MR
[31] Sarason D., “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl
[32] Shapiro Z. Ya., “Pervaya kraevaya zadacha dlya ellipticheskoi sistemy differentsialnykh uravnenii”, Mat. sb., 28:1 (1951), 55–78 | Zbl
[33] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. I”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 665–706
[34] Solonnikov V. A., “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. II”, Tr. Mat. in-ta SSSR, 92, 1966, 233–297 | Zbl
[35] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970 | MR
[36] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl
[37] Stein E. M., Weiss G., Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR
[38] Taylor M. E., Partial differential equations, v. I–III, Appl. Math. Sci, 115–117, 2nd ed., Springer, New York, 2011 | MR | Zbl
[39] Triebel H., Theory of function spaces, Monogr. Math., 78, Birkhäuser, Berlin, 1983 | MR | Zbl
[40] Triebel H., Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius, Barth–Heidelberg, 1995 | MR
[41] Wolka J. T., Rowley B., Lawruk B., Boundary value problems for elliptic systems, Cambridge Univ. Press, Cambridge, 1995 | MR