Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_1_a9, author = {D. V. Khlopin}, title = {Value asymptotics in dynamic games on large horizons}, journal = {Algebra i analiz}, pages = {211--245}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a9/} }
D. V. Khlopin. Value asymptotics in dynamic games on large horizons. Algebra i analiz, Tome 31 (2019) no. 1, pp. 211-245. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a9/
[1] Gaitsgori V. G., “K voprosu ob ispolzovanii metoda usredneniya v zadachakh upravleniya”, Differents. uravneniya, 22:11 (1986), 1876–1886 | MR
[2] Grishin A. F., Poedintseva I. V., “Abelevy i tauberovy teoremy dlya integralov”, Algebra i analiz, 26:3 (2014), 1–86 | MR
[3] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR
[4] Khlopin D. V., “O ravnomernoi tauberovoi teoreme dlya dinamicheskikh igr”, Mat. sbornik, 209:1 (2018), 127–150 | DOI | MR | Zbl
[5] Khlopin D. V., “Ob asimptotike tsen v differentsialnykh igrakh pri usrednenii platezhei po bolshim promezhutkam”, Dinamika sistem i protsessy upravleniya, SDCP-2014, UMTs UPI, Ekaterinburg, 2015, 341–348
[6] Khlopin D. V., “Ravnomernaya tauberova teorema dlya differentsialnykh igr”, Mat. teoriya igr i pril., 7:1 (2015), 92–120 | MR | Zbl
[7] Yakymiv A. L., Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, M., 2005 | MR
[8] Alvarez O., Bardi M., “Ergodic problems in differential games”, Advances in dynamic game theory, Ann. Internet. Soc. Dynam. Games, 9, Birkhäuser, Boston, 2007, 131–152 | DOI | MR | Zbl
[9] Arisawa M., Lions P., “On ergodic stochastic control”, Comm. Partial Differential Equations, 23:11–12 (1998), 2187–2217 | DOI | MR | Zbl
[10] Artstein Z., Gaitsgory V., “The value function of singularly perturbed control systems”, Appl. Math. Optim., 41:3 (2000), 425–445 | DOI | MR | Zbl
[11] Bardi M., “On differential games with long-time-average cost”, Advances in dynamic games and their applications, Ann. Internet. Soc. Dynam. Games, 10, Birkhäuser, Boston, 2009, 3–18 | MR | Zbl
[12] Barles G., Souganidis P. E., “On the large time behavior of solutions of Hamilton-Jacobi equations”, SIAM J. Math. Anal., 31:4 (2000), 925–939 | DOI | MR | Zbl
[13] Bewley T., Kohlberg E., “The asymptotic theory of stochastic games”, Math. Oper. Res., 1:3 (1976), 197–208 | DOI | MR | Zbl
[14] Bingham N. H., Goldie C. M., Teugels J. L., Regular variation, Encyclopedia Math. Appl., 27, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl
[15] Buckdahn R., Cardaliaguet P., Quincampoix M., “Some recent aspects of differential game theory”, Dyn. Games Appl., 1:1 (2011), 74–114 | DOI | MR | Zbl
[16] Buckdahn R., Goreac D., Quincampoix M., “Existence of asymptotic values for nonexpansive stochastic control systems”, Appl. Math. Optim., 70:1 (2014), 1–28 | DOI | MR | Zbl
[17] Cannarsa P., Quincampoix M., “Vanishing discount limit and nonexpansive optimal control and differential games”, SIAM J. Control Optim., 53:4 (2015), 1789–1814 | DOI | MR | Zbl
[18] Cardaliaguet P., “Ergodicity of Hamilton-Jacobi equations with a non coercive nonconvex Hamiltonian in $\mathbf{R}^2/\mathbf{Z}^2$”, Ann. Inst. Henri Poincaré Anal. Non. Linear., 27:3 (2010), 837–856 | DOI | MR | Zbl
[19] Cardaliaguet P., Plaskacz S., “Invariant solutions of differential games and Hamilton–Jacobi–Isaacs equations for time-measurable Hamiltonians”, SIAM J. Control Optim., 38:5 (2000), 1501–1520 | DOI | MR | Zbl
[20] Elliott R. J., Kalton N., The existence of value for differential games, Mem. Amer. Math. Soc., 126, Amer. Math. Soc., Providence, RI, 1972 | MR
[21] Escobedo-Trujillo B. A., Jasso-Fuentes H., Lopez-Barrientos J. D., “Blackwell–Nash equilibria in zero-sum stochastic differential games”, XII Symposium of Probability and Stochastic Processes, Birkhauser, 2018, 169–193 | MR
[22] Fathi A., “Sur la convergence du semi-groupe de Lax–Oleinik”, C. R. Acad. Sci. Paris, Ser. I Math., 327:3 (1998), 267–270 | DOI | MR | Zbl
[23] Gaitsgory V., Parkinson A., Shvartsman I., “Linear programming based optimality conditions and approximate solution of a deterministic infinite horizon discounted optimal control problem in discrete time”, Discrete Contin. Dyn. Syst. Ser. B, 2018 | DOI | MR
[24] Gaitsgory V., Quincampoix M., “On sets of occupational measures generated by a deterministic control system on an infinite time horizon”, Nonlinear Anal., 88 (2013), 27–41 | DOI | MR | Zbl
[25] Grüne L., “On the relation between discounted and average optimal value functions”, J. Differential Equations, 148:1 (1998), 65–99 | DOI | MR | Zbl
[26] Khlopin D. V., “On asymptotic value for dynamic games with saddle point”, 2015 Proc. Conf. on Control and its Appl., SIAM, 2015, 282–289, arXiv: 1501.06993 | DOI
[27] Khlopin D. V., “Tauberian theorem for value functions”, Dyn. Games Appl., 8:2 (2018), 401–422 | DOI | MR | Zbl
[28] Khlopin D. V., “On limit of value functions for various densities”, Optimization and Applications, OPTIMA-2017 (Petrovac, 2017), Proc. CEUR Workshop, 1987, 2017, 328–335
[29] Korevaar J., “A century of complex Tauberian theory”, Bull. Amer. Math. Soc., 39:4 (2002), 475–531 | DOI | MR | Zbl
[30] Laraki R., Sorin S., “Recursive games”, Advances in Zero-Sum Dynamic Games, Handbook of Game Theory, Elsevier, 2014, 27–95
[31] Lehrer E., Sorin S., “A uniform Tauberian theorem in dynamic programming”, Math. Oper. Res., 17:2 (1992), 303–307 | DOI | MR
[32] Li X., Quincampoix M., Renault J., “Limit value for optimal control with general means”, Discrete Contin. Dyn. Syst., 36:4 (2016), 2113–2132 | MR | Zbl
[33] Lions P., Papanicolaou G., Varadhan S. R. S., Homogenization of Hamilton-Jacobi equations, Unpublished preprint, 1988
[34] Mertens J. F., Neyman A., “Stochastic games”, Internat. J. Game Theory, 10:2 (1981), 53–66 | DOI | MR | Zbl
[35] Monderer D., Sorin S., “Asymptotic properties in dynamic programming”, Internat. J. Game Theory, 22:1 (1993), 1–11 | DOI | MR | Zbl
[36] Oliu-Barton M., Vigeral G., “A uniform Tauberian theorem in optimal control”, Advances in Dynamic Games, Birkhäuser, Boston, 2013, 199–215 ; Erratum: HAL preprint hal:00661833v3, , 2016 https://hal.archives-ouvertes.fr/hal-00661833v3 | DOI | MR
[37] Quincampoix M., Renault J., “On the existence of a limit value in some non expansive optimal control problems”, SIAM J. Control Optim, 49:5 (2011), 2118–2132 | DOI | MR | Zbl
[38] Renault J., “General limit value in dynamic programming”, J. Dyn. Games, 1:3 (2014), 471–484 | DOI | MR | Zbl
[39] Renault J., Venel X., “Long-term values in Markov decision processes and repeated games, and a new distance for probability spaces”, Math. Oper. Res., 42:2 (2016), 349–376 | DOI | MR
[40] Sorin S., “Zero-sum repeated games: recent advances and new links with differential games”, Dyn. Games Appl., 1:1 (2011), 172–207 | DOI | MR | Zbl
[41] Subbotin A. I., Generalized solutions of first order PDEs, Birkhäuser, Boston, 1995 | MR
[42] Ziliotto B., “A Tauberian theorem for nonexpansive operators and applications to zero-sum stochastic games”, Math. Oper. Res., 41:4 (2016), 1522–1534 | DOI | MR | Zbl
[43] Ziliotto B., “General limit value in zero-sum stochastic games”, Internat. J. Game Theory, 45:1–2 (2016), 353–374 | DOI | MR | Zbl
[44] Ziliotto B., “Tauberian theorems for general iterations of operators: applications to zero-sum stochastic games”, Games Econom. Behav., 108 (2018), 486–503 | DOI | MR | Zbl