Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_1_a2, author = {R. Macaitien\.{e}}, title = {Some relations between zeros and universality of the {Riemann} zeta-function}, journal = {Algebra i analiz}, pages = {72--79}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a2/} }
R. Macaitienė. Some relations between zeros and universality of the Riemann zeta-function. Algebra i analiz, Tome 31 (2019) no. 1, pp. 72-79. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a2/
[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Stat. Institute, Calcutta, 1981
[2] Dubickas A., Laurinčikas A., “Distribution modulo $1$ and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 | DOI | MR | Zbl
[3] Garunkštis R., Laurinčikas A., “The Riemann hypothesis and universality of the Riemann zeta-function”, Math. Slovaca, 68:4 (2018), 741–748 | DOI | MR | Zbl
[4] Garunkštis R., Laurinčikas A., Macaitienė R., “Zeros of the Riemann zeta-function and its universality”, Acta Arith., 181:2 (2017), 127–142 | DOI | MR | Zbl
[5] Hoheisel G., “Primzahlprobleme in der Analysis”, S-B. Preuss. Akad. Wiss., 1930, 580–588 | Zbl
[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter, New York, 1992 | MR
[7] Macaitienė R., “On discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts”, Arch. Math. (Basel), 108:3 (2017), 271–281 | DOI | MR | Zbl
[8] Montgomery H. L., “The pair correlation of zeros of the zeta function”, Analytic Number Theory (St. Louis Univ., 1972), Proc. Sympos. Pure Math., XXIV, Amer. Math. Soc., Providence, R.I., 1973, 181–193 | DOI | MR
[9] Pańkowski Ł., “Joint universality for dependent $L$-functions”, The Ramanujan J., 45:1 (2017), 181–195
[10] Reich A., “Werteverteilung von Zetafunktionen”, Arch. Math., 34:5 (1980), 440–451 | DOI | MR | Zbl
[11] Steuding J., “Upper bound for the density of universality”, Acta Arith., 107:2 (2003), 195–202 | DOI | MR | Zbl
[12] Steuding J., Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007 | MR | Zbl
[13] Steuding J., “The roots of the equation $\zeta(s)=a$ are uniformly distributed modulo one”, Anal. Probab. Methods Number Theory, TEV, Vilnius, 2012, 243–249 | MR | Zbl
[14] Titchmarsh E. C., The theory of the Riemann zeta-function, 2nd ed., Oxford Univ. Press, Oxford, 1986 | MR | Zbl