Some relations between zeros and universality of the Riemann zeta-function
Algebra i analiz, Tome 31 (2019) no. 1, pp. 72-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, we give some remarks on the density of shifts of the Riemann zeta-function $\zeta(s+i\gamma_k)$, which approximate a wide class of analytic functions. Here the $\gamma_k$ denote imaginary parts of nontrivial zeros of $\zeta(s)$.
Keywords: Riemann zeta-function, discrete universality, nontrivial zeros.
@article{AA_2019_31_1_a2,
     author = {R. Macaitien\.{e}},
     title = {Some relations between zeros and universality of the {Riemann} zeta-function},
     journal = {Algebra i analiz},
     pages = {72--79},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a2/}
}
TY  - JOUR
AU  - R. Macaitienė
TI  - Some relations between zeros and universality of the Riemann zeta-function
JO  - Algebra i analiz
PY  - 2019
SP  - 72
EP  - 79
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_1_a2/
LA  - en
ID  - AA_2019_31_1_a2
ER  - 
%0 Journal Article
%A R. Macaitienė
%T Some relations between zeros and universality of the Riemann zeta-function
%J Algebra i analiz
%D 2019
%P 72-79
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_1_a2/
%G en
%F AA_2019_31_1_a2
R. Macaitienė. Some relations between zeros and universality of the Riemann zeta-function. Algebra i analiz, Tome 31 (2019) no. 1, pp. 72-79. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a2/

[1] Bagchi B., The statistical behaviour and universality properties of the Riemann zeta-function and other allied Dirichlet series, Ph. D. Thesis, Indian Stat. Institute, Calcutta, 1981

[2] Dubickas A., Laurinčikas A., “Distribution modulo $1$ and the discrete universality of the Riemann zeta-function”, Abh. Math. Semin. Univ. Hambg., 86:1 (2016), 79–87 | DOI | MR | Zbl

[3] Garunkštis R., Laurinčikas A., “The Riemann hypothesis and universality of the Riemann zeta-function”, Math. Slovaca, 68:4 (2018), 741–748 | DOI | MR | Zbl

[4] Garunkštis R., Laurinčikas A., Macaitienė R., “Zeros of the Riemann zeta-function and its universality”, Acta Arith., 181:2 (2017), 127–142 | DOI | MR | Zbl

[5] Hoheisel G., “Primzahlprobleme in der Analysis”, S-B. Preuss. Akad. Wiss., 1930, 580–588 | Zbl

[6] Karatsuba A. A., Voronin S. M., The Riemann zeta-function, De Gruyter Exp. Math., 5, Walter de Gruyter, New York, 1992 | MR

[7] Macaitienė R., “On discrete universality of the Riemann zeta-function with respect to uniformly distributed shifts”, Arch. Math. (Basel), 108:3 (2017), 271–281 | DOI | MR | Zbl

[8] Montgomery H. L., “The pair correlation of zeros of the zeta function”, Analytic Number Theory (St. Louis Univ., 1972), Proc. Sympos. Pure Math., XXIV, Amer. Math. Soc., Providence, R.I., 1973, 181–193 | DOI | MR

[9] Pańkowski Ł., “Joint universality for dependent $L$-functions”, The Ramanujan J., 45:1 (2017), 181–195

[10] Reich A., “Werteverteilung von Zetafunktionen”, Arch. Math., 34:5 (1980), 440–451 | DOI | MR | Zbl

[11] Steuding J., “Upper bound for the density of universality”, Acta Arith., 107:2 (2003), 195–202 | DOI | MR | Zbl

[12] Steuding J., Value-distribution of $L$-functions, Lecture Notes in Math., 1877, Springer, Berlin, 2007 | MR | Zbl

[13] Steuding J., “The roots of the equation $\zeta(s)=a$ are uniformly distributed modulo one”, Anal. Probab. Methods Number Theory, TEV, Vilnius, 2012, 243–249 | MR | Zbl

[14] Titchmarsh E. C., The theory of the Riemann zeta-function, 2nd ed., Oxford Univ. Press, Oxford, 1986 | MR | Zbl