On algebras of harmonic quaternion fields in ${\mathbb R}^3$
Algebra i analiz, Tome 31 (2019) no. 1, pp. 1-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2019_31_1_a0,
     author = {M. I. Belishev and A. F. Vakulenko},
     title = {On algebras of harmonic quaternion fields in ${\mathbb R}^3$},
     journal = {Algebra i analiz},
     pages = {1--17},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a0/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - A. F. Vakulenko
TI  - On algebras of harmonic quaternion fields in ${\mathbb R}^3$
JO  - Algebra i analiz
PY  - 2019
SP  - 1
EP  - 17
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_1_a0/
LA  - ru
ID  - AA_2019_31_1_a0
ER  - 
%0 Journal Article
%A M. I. Belishev
%A A. F. Vakulenko
%T On algebras of harmonic quaternion fields in ${\mathbb R}^3$
%J Algebra i analiz
%D 2019
%P 1-17
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_1_a0/
%G ru
%F AA_2019_31_1_a0
M. I. Belishev; A. F. Vakulenko. On algebras of harmonic quaternion fields in ${\mathbb R}^3$. Algebra i analiz, Tome 31 (2019) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a0/

[1] Abel M., Jarosz K., “Noncommutative uniform algebras”, Studia Math., 162:3 (2004), 213–218 | DOI | MR | Zbl

[2] Belishev M. I., “The Calderon problem for two-dimensional manifolds by the BC-method”, SIAM J. Math. Anal., 35:1 (2003), 172–182 | DOI | MR | Zbl

[3] Belishev M. I., “Some remarks on impedance tomography problem for $3d$-manifolds”, CUBO, 7:1 (2005), 43–53 | MR

[4] Belishev M. I., “Geometrization of rings as a method for solving inverse problems”, Sobolev Spaces in Mathematics. III, Int. Math. Ser. (N.Y.), 10, Springer, New York, 2009, 5–24 | DOI | MR | Zbl

[5] Belishev M. I., “Algebras in reconstruction of manifolds”, Spectral theory and partial differential equations, Contemp. Math., 640, Amer. Math. Soc., Providence, RI, 2015, 1–12 | DOI | MR | Zbl

[6] Belishev M. I., “Ob algebrakh trekhmernykh kvaternionnykh garmonicheskikh polei”, Zap. nauch. semin. POMI, 451, 2016, 14–28

[7] Belishev M. I., “Granichnoe upravlenie i tomografiya rimanovykh mnogoobrazii (BC-metod)”, Uspekhi mat. nauk, 72:4 (2017), 3–66 | DOI | MR | Zbl

[8] Belishev M. I., Demchenko M. N., “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47 | DOI | MR | Zbl

[9] Belishev M. I., Sharafutdinov V. A., “Dirichlet to Neumann operator on differential forms”, Bull. Sci. Math., 132:2 (2008), 128–145 | DOI | MR | Zbl

[10] Jarosz K., “Function representation of a noncommutative uniform algebra”, Proc. Amer. Math. Soc., 136:2 (2007), 605–611 | DOI | MR

[11] Joyce D., A theory of quaternionic algebras with applications to hypercomplex geometry, 2000, arXiv: math/00100/9v1 [math.DG] | MR

[12] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR

[13] Schwarz G., Hodge decomposition — a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl

[14] Stout E. L., “Two theorems concerning functions holomorphic on multiply connected domains”, Bull. Amer. Math. Soc., 69 (1963), 527–530 | DOI | MR | Zbl