On the motivic commutative ring spectrum~$\mathbf{BO}$
Algebra i analiz, Tome 30 (2018) no. 6, pp. 43-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algebraic commutative ring $T$-spectrum $\mathbf{BO}$ is constructed such that it is stably fibrant, $(8,4)$-periodic, and on $\mathcal Sm\mathcal Op/S$ the cohomology theory $(X,U)\mapsto\mathbf{BO}^{p,q}(X_+/U_+)$ and Schlichting's Hermitian $K$-theory functor $(X,U)\mapsto KO^{[q]}_{2q-p}(X,U)$ are canonically isomorphic. The motivic weak equivalence $\mathbb Z\times HGr\xrightarrow\sim\mathbf{KSp}$ relating the infinite quaternionic Grassmannian to symplectic $K$-theory is used to equip $\mathbf{BO}$ with the structure of a commutative monoid in the motivic stable homotopy category. When the base scheme is $\operatorname{Spec}\mathbb Z[\frac12]$, this monoid structure and the induced ring structure on the cohomology theory $\mathbf{BO}^{*,*}$ are unique structures compatible with the products $$ KO^{[2m]}_0(X)\times KO^{[2n]}_0(Y)\to KO^{[2m+2n]}_0(X\times Y) $$ on Grothendieck–Witt groups induced by the tensor product of symmetric chain complexes. The cohomology theory is bigraded commutative with the switch map acting on $\mathbf{BO}^{*,*}(T\wedge T)$ in the same way as multiplication by the Grothendieck–Witt class of the symmetric bilinear space $\langle-1\rangle$.
Keywords: Hermitian $K$-theory, Grothendieck–Witt groups, symplectic orientation.
@article{AA_2018_30_6_a2,
     author = {I. Panin and C. Walter},
     title = {On the motivic commutative ring spectrum~$\mathbf{BO}$},
     journal = {Algebra i analiz},
     pages = {43--96},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_6_a2/}
}
TY  - JOUR
AU  - I. Panin
AU  - C. Walter
TI  - On the motivic commutative ring spectrum~$\mathbf{BO}$
JO  - Algebra i analiz
PY  - 2018
SP  - 43
EP  - 96
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_6_a2/
LA  - en
ID  - AA_2018_30_6_a2
ER  - 
%0 Journal Article
%A I. Panin
%A C. Walter
%T On the motivic commutative ring spectrum~$\mathbf{BO}$
%J Algebra i analiz
%D 2018
%P 43-96
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_6_a2/
%G en
%F AA_2018_30_6_a2
I. Panin; C. Walter. On the motivic commutative ring spectrum~$\mathbf{BO}$. Algebra i analiz, Tome 30 (2018) no. 6, pp. 43-96. http://geodesic.mathdoc.fr/item/AA_2018_30_6_a2/

[1] Adams J. F., Stable homotopy and generalized homology, Univ. Chicago Lecture Notes, Univ. Chicago Press, Chicago, 1974 | MR

[2] Atiyah M. F., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | DOI | MR | Zbl

[3] Balmer P., “Triangular Witt groups. I. The $12$-term localization exact sequence”, $K$-Theory, 19:4 (2000), 311–363 | DOI | MR | Zbl

[4] Balmer P., Walter C., “A Gersten–Witt spectral sequence for regular schemes”, Ann. Sci. École Norm. Sup. (4), 35:1 (2002), 127–152 | DOI | MR | Zbl

[5] Barge J., Lannes J., Suites de Sturm, indice de Maslov et périodicité de Bott, Progress Math., 267, Birkhäuser Verlag, Basel, 2008 | MR

[6] Conner P. E., Floyd E. E., The relation of cobordism to $K$-theory, Lecture Notes in Math., 28, Springer-Verlag, Berlin, 1966 | DOI | MR

[7] Friedlander E. M., Suslin A., “The spectral sequence relating algebraic $K$-theory to motivic cohomology”, Ann. Sci. École Norm. Sup. (4), 35:6 (2002), 773–875 | DOI | MR | Zbl

[8] Gille S., “The general dévissage theorem for Witt groups of schemes”, Arch. Math. (Basel), 88:4 (2007), 333–343 | DOI | MR | Zbl

[9] Gille S., Nenashev A., “Pairings in triangular Witt theory”, J. Algebra, 261:2 (2003), 292–309 | DOI | MR | Zbl

[10] Hornbostel J.,, “$A^1$-representability of Hermitian $K$-theory and Witt groups”, Topology, 44:3 (2005), 661–687 | DOI | MR | Zbl

[11] Jardine F., “Motivic symmetric spectra”, Doc. Math., 5 (2000), 445–552 | MR

[12] Karoubi M., “Localisation de formes quadratiques. I”, Ann. Sci. École Norm. Sup. (4), 7 (1975), 359–403 | DOI | MR

[13] Karoubi M., “Le théorème fondamental de la $K$-théorie hermitienne”, Ann. of Math. (2), 112:2 (1980), 259–282 | DOI | MR | Zbl

[14] Morel F., Voevodsky V., “$\mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl

[15] Nenashev A., “Gysin maps in Balmer–Witt theory”, J. Pure Appl. Algebra, 211:1 (2007), 203–221 | DOI | MR | Zbl

[16] Panin I., “Oriented cohomology theories of algebraic varieties”, $K$-Theory, 30:3, Special issue in honor of Hyman Bass on his seventieth birthday. Part III (2003), 265–314 | DOI | MR | Zbl

[17] Panin I., “Oriented cohomology theories of algebraic varieties. II (after I. Panin and A. Smirnov)”, Homology, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl

[18] Panin I., Pimenov K., Röndigs O., “On Voevodsky's algebraic $K$-theory spectrum”, Algebraic topology, Abel Symp., 4, Springer, Berlin, 2009, 279–330 | MR | Zbl

[19] Panin I., Walter C., Quaternionic Grassmannians and Borel classes in algebraic geometry, Preprint, 2018

[20] Panin I., Walter C., On the algebraic cobordism spectra, MSL and MSp, Preprint, 2018

[21] Panin I., Walter C., On the relation of symplectic algebraic cobordism to Hermitian $K$-theory, Preprint, 2018

[22] Schlichting M., “Hermitian $K$-theory on a theorem of Giffen”, $K$-Theory, 32:3 (2004), 253–267 | DOI | MR | Zbl

[23] Schlichting M., Hermitian $K$-theory, derived equivalences and Karoubi's fundamental theorem, Draft, 2006

[24] Schlichting M., “The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes”, Invent. Math., 179:2 (2010), 349–433 | DOI | MR | Zbl

[25] Voevodsky V., “$\mathbf A^1$-homotopy theory”, Proc. Intern. Congress Math. (Berlin, 1998), v. I, Doc. Math., Extra vol. I, 1998, 579–564 | MR

[26] Voevodsky V., Röndigs O., Østvær P. A., “Voevodsky's Nordfjordeid lectures: Motivic homotopy theory”, Motivic homotopy theory, Universitext, Springer, Berlin, 2007, 147–221 | DOI | MR

[27] Walter C., The formal group law for Borel classes in Hermitian $K$-theory, (in preparation), 2010