Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_6_a2, author = {I. Panin and C. Walter}, title = {On the motivic commutative ring spectrum~$\mathbf{BO}$}, journal = {Algebra i analiz}, pages = {43--96}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_6_a2/} }
I. Panin; C. Walter. On the motivic commutative ring spectrum~$\mathbf{BO}$. Algebra i analiz, Tome 30 (2018) no. 6, pp. 43-96. http://geodesic.mathdoc.fr/item/AA_2018_30_6_a2/
[1] Adams J. F., Stable homotopy and generalized homology, Univ. Chicago Lecture Notes, Univ. Chicago Press, Chicago, 1974 | MR
[2] Atiyah M. F., “Riemann surfaces and spin structures”, Ann. Sci. École Norm. Sup. (4), 4 (1971), 47–62 | DOI | MR | Zbl
[3] Balmer P., “Triangular Witt groups. I. The $12$-term localization exact sequence”, $K$-Theory, 19:4 (2000), 311–363 | DOI | MR | Zbl
[4] Balmer P., Walter C., “A Gersten–Witt spectral sequence for regular schemes”, Ann. Sci. École Norm. Sup. (4), 35:1 (2002), 127–152 | DOI | MR | Zbl
[5] Barge J., Lannes J., Suites de Sturm, indice de Maslov et périodicité de Bott, Progress Math., 267, Birkhäuser Verlag, Basel, 2008 | MR
[6] Conner P. E., Floyd E. E., The relation of cobordism to $K$-theory, Lecture Notes in Math., 28, Springer-Verlag, Berlin, 1966 | DOI | MR
[7] Friedlander E. M., Suslin A., “The spectral sequence relating algebraic $K$-theory to motivic cohomology”, Ann. Sci. École Norm. Sup. (4), 35:6 (2002), 773–875 | DOI | MR | Zbl
[8] Gille S., “The general dévissage theorem for Witt groups of schemes”, Arch. Math. (Basel), 88:4 (2007), 333–343 | DOI | MR | Zbl
[9] Gille S., Nenashev A., “Pairings in triangular Witt theory”, J. Algebra, 261:2 (2003), 292–309 | DOI | MR | Zbl
[10] Hornbostel J.,, “$A^1$-representability of Hermitian $K$-theory and Witt groups”, Topology, 44:3 (2005), 661–687 | DOI | MR | Zbl
[11] Jardine F., “Motivic symmetric spectra”, Doc. Math., 5 (2000), 445–552 | MR
[12] Karoubi M., “Localisation de formes quadratiques. I”, Ann. Sci. École Norm. Sup. (4), 7 (1975), 359–403 | DOI | MR
[13] Karoubi M., “Le théorème fondamental de la $K$-théorie hermitienne”, Ann. of Math. (2), 112:2 (1980), 259–282 | DOI | MR | Zbl
[14] Morel F., Voevodsky V., “$\mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl
[15] Nenashev A., “Gysin maps in Balmer–Witt theory”, J. Pure Appl. Algebra, 211:1 (2007), 203–221 | DOI | MR | Zbl
[16] Panin I., “Oriented cohomology theories of algebraic varieties”, $K$-Theory, 30:3, Special issue in honor of Hyman Bass on his seventieth birthday. Part III (2003), 265–314 | DOI | MR | Zbl
[17] Panin I., “Oriented cohomology theories of algebraic varieties. II (after I. Panin and A. Smirnov)”, Homology, Homotopy Appl., 11:1 (2009), 349–405 | DOI | MR | Zbl
[18] Panin I., Pimenov K., Röndigs O., “On Voevodsky's algebraic $K$-theory spectrum”, Algebraic topology, Abel Symp., 4, Springer, Berlin, 2009, 279–330 | MR | Zbl
[19] Panin I., Walter C., Quaternionic Grassmannians and Borel classes in algebraic geometry, Preprint, 2018
[20] Panin I., Walter C., On the algebraic cobordism spectra, MSL and MSp, Preprint, 2018
[21] Panin I., Walter C., On the relation of symplectic algebraic cobordism to Hermitian $K$-theory, Preprint, 2018
[22] Schlichting M., “Hermitian $K$-theory on a theorem of Giffen”, $K$-Theory, 32:3 (2004), 253–267 | DOI | MR | Zbl
[23] Schlichting M., Hermitian $K$-theory, derived equivalences and Karoubi's fundamental theorem, Draft, 2006
[24] Schlichting M., “The Mayer–Vietoris principle for Grothendieck–Witt groups of schemes”, Invent. Math., 179:2 (2010), 349–433 | DOI | MR | Zbl
[25] Voevodsky V., “$\mathbf A^1$-homotopy theory”, Proc. Intern. Congress Math. (Berlin, 1998), v. I, Doc. Math., Extra vol. I, 1998, 579–564 | MR
[26] Voevodsky V., Röndigs O., Østvær P. A., “Voevodsky's Nordfjordeid lectures: Motivic homotopy theory”, Motivic homotopy theory, Universitext, Springer, Berlin, 2007, 147–221 | DOI | MR
[27] Walter C., The formal group law for Borel classes in Hermitian $K$-theory, (in preparation), 2010