Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_6_a1, author = {V. V. Kapustin}, title = {Beurling's theorem, {Davenport's} formula, and the {Riemann} hypothesis}, journal = {Algebra i analiz}, pages = {20--42}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_6_a1/} }
V. V. Kapustin. Beurling's theorem, Davenport's formula, and the Riemann hypothesis. Algebra i analiz, Tome 30 (2018) no. 6, pp. 20-42. http://geodesic.mathdoc.fr/item/AA_2018_30_6_a1/
[1] Báez-Duarte L., “A class of invariant unitary operators”, Adv. Math., 144:1 (1999), 1–12 | DOI | MR | Zbl
[2] Báez-Duarte L., “A strengthening of the Nyman–Beurling criterion for the Riemann hypothesis”, Atti Acad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:1 (2003), 5–11 | MR | Zbl
[3] Bagchi B., “On Nyman, Beurling and Baez-Duarte's Hilbert space reformulation of the Riemann hypothesis”, Proc. Indian Acad. Sci. Math. Sci., 116:2 (2003), 137–146 | DOI | MR
[4] Balazard M., Saias E., “Notes sur la fonction $\zeta$ de Riemann, 1”, Adv. Math., 139:2 (1998), 310–321 | DOI | MR | Zbl
[5] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, v. 1, Nauka, M., 1973
[6] Beurling A., “A closure problem related to the Riemann zeta function”, Proc. Natl. Acad. Sci. U.S.A., 41 (1955), 312–314 | DOI | MR | Zbl
[7] Davenport H., “On some infinite series involving arithmetical functions”, Quart. J. Math. Oxford Ser. (2), 8:1 (1937), 8–13 | DOI | Zbl
[8] Lax P., “Translation invariant subspaces”, Acta Math., 101 (1959), 163–178 | DOI | MR | Zbl
[9] Nyman B., On some groups and semi-groups of translations, Ph. D. Thesis, Uppsala Univ., 1950 | Zbl
[10] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, Izd-vo inostr. literatury, M., 1953