On Chow weight structures without projectivity and resolution of singularities
Algebra i analiz, Tome 30 (2018) no. 5, pp. 57-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2018_30_5_a1,
     author = {M. V. Bondarko and D. Z. Kumallagov},
     title = {On {Chow} weight structures without projectivity and resolution of singularities},
     journal = {Algebra i analiz},
     pages = {57--83},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_5_a1/}
}
TY  - JOUR
AU  - M. V. Bondarko
AU  - D. Z. Kumallagov
TI  - On Chow weight structures without projectivity and resolution of singularities
JO  - Algebra i analiz
PY  - 2018
SP  - 57
EP  - 83
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_5_a1/
LA  - ru
ID  - AA_2018_30_5_a1
ER  - 
%0 Journal Article
%A M. V. Bondarko
%A D. Z. Kumallagov
%T On Chow weight structures without projectivity and resolution of singularities
%J Algebra i analiz
%D 2018
%P 57-83
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_5_a1/
%G ru
%F AA_2018_30_5_a1
M. V. Bondarko; D. Z. Kumallagov. On Chow weight structures without projectivity and resolution of singularities. Algebra i analiz, Tome 30 (2018) no. 5, pp. 57-83. http://geodesic.mathdoc.fr/item/AA_2018_30_5_a1/

[1] Beilinson A., Vologodsky V., “A DG guide to Voevodsky motives”, Geom. Funct. Analysis, 17:6 (2008), 1709–1787 | DOI | MR | Zbl

[2] Bondarko M. V., “Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; Voevodsky vs. Hanamura”, J. Inst. Math. Jussieu, 8:1 (2009), 39–97 ; arXiv: math/0601713[math.AG] | DOI | MR | Zbl

[3] Bondarko M., “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. K-theory., 6:3 (2010), 387–504 ; arXiv: 0704.4003 | DOI | MR | Zbl

[4] Bondarko M. V., “$\mathbb Z[\frac1p]$-motivic resolution of singularities”, Compos. Math., 147:5 (2011), 1434–1446 | DOI | MR | Zbl

[5] Bondarko M. V., On torsion pairs, (well generated) weight structures, adjacent $t$-structures, and related (co)homological functors, preprint, 2016, arXiv: 1611.00754

[6] Bondarko M. V., “Intersecting the dimension and slice filtrations for motives”, Homology, Homotopy Appl., 20:1 (2018), 259–274 | DOI | MR | Zbl

[7] Bondarko M. V., Gersten weight structures for motivic homotopy categories; retracts of cohomology of function fields, motivic dimensions, and coniveau spectral sequences, preprint, 2018, arXiv: 1803.01432

[8] Bondarko M. V., Luzgarev A. Ju., On relative $K$-motives, weights for them, and negative $K$-groups, preprint, 2016, arXiv: 1605.08435

[9] Bondarko M. V., Sosnilo V. A., “Non-commutative localizations of additive categories and weight structures; applications to birational motives”, J. Inst. Math. Jussieu, 17:4 (2018), 785–821 | DOI | MR | Zbl

[10] Bondarko M. V., Sosnilo V. A., On purely generated $\alpha$-smashing weight structures and weight-exact localizations, preprint, 2017, arXiv: 1712.00850

[11] Bondarko M. V., Sosnilo V. A., “On constructing weight structures and extending them to idempotent extensions”, Homology, Homotopy Appl., 20:1 (2018), 37–57 | DOI | MR | Zbl

[12] Cisinski D.-C., Déglise F., “Local and stable homological algebra in Grothendieck abelian categories”, Homology, Homotopy Appl., 11:1 (2009), 219–260 | DOI | MR | Zbl

[13] Cisinski D.-C., Déglise F., “Mixed Weil cohomologies”, Adv. Math., 230:1 (2012), 55–130 | DOI | MR | Zbl

[14] Cisinski D.-C., Déglise F., “Integral mixed motives in equal characteristic”, Doc. Math., 2015, Extra vol.: Alexander S. Merkurjev's Sixtieth Birthday, 145–194 | MR | Zbl

[15] Déglise F., “Around the Gysin triangle. II”, Doc. Math., 13 (2008), 613–675 | MR | Zbl

[16] Déglise F., “Motifs géneriqués”, Rend. Semin. Mat. Univ. Padova, 119 (2008), 173–244 | DOI | MR | Zbl

[17] Déglise F., “Modules homotopiques”, Doc. Math., 16 (2011), 411–455 | MR | Zbl

[18] Deligne P., “Théorie de Hodge. II”, Publ. Math Inst. Hautes Etudes Sci., 40 (1971), 5–57 | DOI | MR | Zbl

[19] Deligne P., “La conjecture de Weil. II”, Publ. Math. Inst. Hautes Etudes Sci., 52 (1980), 137–252 | DOI | MR | Zbl

[20] Kahn B., Sujatha R., “Birational motives, II: triangulated birational motives”, Int. Math. Res. Not. IMRN, 2017:22 (2017), 6778–6831 | MR

[21] Kelly S., Triangulated categories of motives in positive characteristi, PhD thesis, Univ. Paris 13, Australian National Univ., 2012 ; arXiv: 1305.5349 | Zbl

[22] Mazza C., Voevodsky V., Weibel Ch., Lecture notes on motivic cohomology, Clay Math. Monogr., 2, Amer. Math. Soc., Providence, RJ, 2006 | MR | Zbl

[23] Neeman A., Triangulated Categories, Ann. Math. Stud., 148, Princeton Univ. Press, Princeton, 2001 | MR | Zbl

[24] Pauksztello D., “A note on compactly generated co-$t$-structures”, Comm. Algebra, 40:2 (2012), 386–394 | DOI | MR | Zbl

[25] Voevodsky V., “Triangulated categories of motives over a field Cycles, transfers and motivic homology theories”, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, 2000, 188–238 | MR | Zbl

[26] Voevodsky V., “Cancellation theorem”, Doc. Math., 2010, Extra vol.: A. Suslin sixtieth birthday, 671–685 | MR | Zbl

[27] Wildeshaus J., “Chow motives without projectivity”, Compos. Math., 145:5 (2009), 1196–1226 | DOI | MR | Zbl