Spectral theory of rank one perturbations of normal compact operators
Algebra i analiz, Tome 30 (2018) no. 5, pp. 1-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

A functional model is constructed for rank one perturbations of compact normal operators that act in a certain Hilbert spaces of entire functions generalizing the de Branges spaces. By using this model, completeness and spectral synthesis problems are studied for such perturbations. Previously, the spectral theory of rank one perturbations was developed in the selfadjoint case by D. Yakubovich and the author. In the present paper, most of known results in the area are extended and simplified significantly. Also, an ordering theorem for invariant subspaces with common spectral part is proved. This result is new even for rank one perturbations of compact selfadjoint operators.
Keywords: spectral synthesis, nonvanishing moments, domination, completeness, spectrum, invariant subspace, functional model.
@article{AA_2018_30_5_a0,
     author = {A. D. Baranov},
     title = {Spectral theory of rank one perturbations of normal compact operators},
     journal = {Algebra i analiz},
     pages = {1--56},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_5_a0/}
}
TY  - JOUR
AU  - A. D. Baranov
TI  - Spectral theory of rank one perturbations of normal compact operators
JO  - Algebra i analiz
PY  - 2018
SP  - 1
EP  - 56
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_5_a0/
LA  - en
ID  - AA_2018_30_5_a0
ER  - 
%0 Journal Article
%A A. D. Baranov
%T Spectral theory of rank one perturbations of normal compact operators
%J Algebra i analiz
%D 2018
%P 1-56
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_5_a0/
%G en
%F AA_2018_30_5_a0
A. D. Baranov. Spectral theory of rank one perturbations of normal compact operators. Algebra i analiz, Tome 30 (2018) no. 5, pp. 1-56. http://geodesic.mathdoc.fr/item/AA_2018_30_5_a0/

[1] Abakumov E., Baranov A., Belov Yu., Krein-type theorems and ordered structure of Cauchy–de Branges spaces, arXiv: 1802.03385

[2] Aleman A., Richter S., “Simply invariant subspaces of $H^2$ of some multiply connected regions”, Integral Equations Operator Theory, 24:2 (1996), 127–155 | DOI | MR | Zbl

[3] Baranov A., “Completeness and Riesz bases of reproducing kernels in model subspaces”, Int. Math. Res. Not. IMRN, 2006 (2006), Article ID 81530 | MR | Zbl

[4] Baranov A., Belov Yu., “Systems of reproducing kernels and their biorthogonal: completeness or incompleteness?”, Int. Math. Res. Not. IMRN, 2011:22 (2011), 5076–5108 | MR | Zbl

[5] Baranov A., Belov Yu., “Spectral synthesis for operators and systems”, Eur. Math. Soc. Newsl., 103 (2017), 11–18 | MR | Zbl

[6] Baranov A., Belov Yu., Synthesable differentiation-invariant subspaces, arXiv: 1607.08392

[7] Baranov A., Belov Yu., Borichev A., “Hereditary completeness for systems of exponentials and reproducing kernels”, Adv. Math., 235 (2013), 525–554 | DOI | MR | Zbl

[8] Baranov A., Belov Yu., Borichev A., “Spectral synthesis in de Branges spaces”, Geom. Funct. Anal., 25:2 (2015), 417–452 | DOI | MR | Zbl

[9] Baranov A., Belov Yu., Borichev A., “Summability properties of Gabor expansions”, J. Funct. Anal., 274:9 (2018), 2532–2552 | DOI | MR | Zbl

[10] Baranov A., Belov Yu., Borichev A., Yakubovich D., “Recent developments in spectral synthesis for exponential systems and for non-self-adjoint operators”, Recent Trends in Analysis, Theta Ser. Adv. Math., 16, Theta Foundation, Bucharest, 2013, 17–34 | MR | Zbl

[11] Baranov A., Yakubovich D., “One-dimensional perturbations of unbounded selfadjoint operators with empty spectrum”, J. Math. Anal. Appl., 424:2 (2015), 1404–1424 | DOI | MR | Zbl

[12] Baranov A., Yakubovich D., “Completeness and spectral synthesis of nonselfadjoint one-dimensional perturbations of selfadjoint operators”, Adv. Math., 302 (2016), 740–798 | DOI | MR | Zbl

[13] Baranov A., Yakubovich D., “Completeness of rank one perturbations of normal operators with lacunary spectrum”, J. Spectral Theory, 8:1 (2018), 1–32 | DOI | MR | Zbl

[14] Belov Yu., “Complementability of exponential systems”, C. R. Math. Acad. Sci. Paris, 353:3 (2015), 215–218 | DOI | MR | Zbl

[15] Belov Yu., Mengestie T., Seip K., “Discrete Hilbert transforms on sparse sequences”, Proc. Lond. Math. Soc. (3), 103:3 (2011), 73–105 | DOI | MR | Zbl

[16] de Branges L., Hilbert spaces of entire functions, Englewood Cliffs, N.J., Prentice-Hall, 1968 | MR | Zbl

[17] Deckard D., Foiaş C., Pearcy C., “Compact operators with root vectors that span”, Proc. Amer. Math. Soc., 76:1 (1979), 101–106 | DOI | MR | Zbl

[18] Fricain E., “Complétude des noyaux reproduisants dans les espaces modèles”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 661–686 | DOI | MR | Zbl

[19] Garnett J. B., Marshall D. E.,, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[20] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965

[21] Gubreev G. M., Tarasenko A. A., “Spektralnoe razlozhenie modelnykh operatorov v prostranstvakh de Branzha”, Mat. sb., 201:11 (2010), 41–76 | DOI | MR

[22] Hamburger H., “Über die Zerlegung des Hilbertschen Raumes durch vollstetige lineare Transformationen”, Math. Nachr., 4 (1951), 56–69 | MR

[23] Havin V., Jöricke B., The uncertainty principle in harmonic analysis, Ergeb. Math. Grenzgeb. (3), 28, Springer-Verlag, Berlin, 1994 | MR | Zbl

[24] Hitt D., “Invariant subspaces of $H^2$ of an annulus”, Pacific J. Math., 134:1 (1988), 101–120 | DOI | MR | Zbl

[25] Kapustin V. V., “Odnomernye vozmuscheniya singulyarnykh unitarnykh operatorov”, Zap. nauch. semin. POMI, 232, 1996, 118–122 | MR | Zbl

[26] Koosis P., Introduction to $H^p$ spaces, London Math. Soc. Lecture Notes Ser., 40, Cambridge Univ. Press, Cambridge, 1980 | MR

[27] Koosis P., The Logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[28] Krein M. G., “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. mat., 11:4 (1947), 309–326 | MR | Zbl

[29] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956

[30] Levin B. Ya., Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[31] Lunyov A. A., Malamud M. M., “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectr. Theory, 5:1 (2015), 17–70 | DOI | MR | Zbl

[32] Lunyov A. A., Malamud M. M., “On spectral synthesis for dissipative Dirac type operators”, Integral Equations Operator Theory, 80:1 (2014), 79–106 | DOI | MR | Zbl

[33] Makarov N., Poltoratski A., “Meromorphic inner functions, Toeplitz kernels, and the uncertainty principle”, Perspectives in Analysis, Math. Phys. Stud., 27, Springer Verlag, Berlin, 2005, 185–252 | DOI | MR | Zbl

[34] Markus A. S., “Zadacha spektralnogo sinteza operatorov s tochechnym spektrom”, Izv. AN SSSR. Ser. mat., 34:3 (1970), 662–688 | MR | Zbl

[35] Nikolskii N. K., “Polnye rasshireniya volterrovykh operatorov”, Izv. AN SSSR. Ser. mat., 33:6 (1969), 1349–1355 | MR | Zbl

[36] Nikolskii N. K., Khruschev S. V., “Funktsionalnaya model i nekotorye zadachi spektralnoi teorii funktsii”, Tr. Mat. in-ta SSSR, 176, 1987, 97–120 | MR | Zbl

[37] Remling C., “Schrödinger operators and de Branges spaces”, J. Funct. Anal., 196:2 (2002), 323–394 | DOI | MR | Zbl

[38] Romanov R., Canonical systems and de Branges spaces, arXiv: 1408.6022

[39] Sarason D., “Nearly invariant subspaces of the backward shift”, Oper. Theory Adv. Appl., 35, Birkhäuser, Basel, 1988, 481–493 | MR

[40] Sherstyukov V. B., “Razlozhenie obratnoi velichiny tseloi funktsii s nulyami v polose v ryad Kreina”, Mat. sb., 202:12 (2011), 137–156 | DOI | MR | Zbl

[41] Wermer J., “On invariant subspaces of normal operators”, Proc. Amer. Math. Soc., 3:2 (1952), 270–277 | DOI | MR | Zbl

[42] Wolff J., “Sur les series $\sum\frac{A_k}{z-\alpha_k}$”, C. R. Acad. Sci. Paris, 173 (1921), 1327–1328 | Zbl