Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_5_a0, author = {A. D. Baranov}, title = {Spectral theory of rank one perturbations of normal compact operators}, journal = {Algebra i analiz}, pages = {1--56}, publisher = {mathdoc}, volume = {30}, number = {5}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_5_a0/} }
A. D. Baranov. Spectral theory of rank one perturbations of normal compact operators. Algebra i analiz, Tome 30 (2018) no. 5, pp. 1-56. http://geodesic.mathdoc.fr/item/AA_2018_30_5_a0/
[1] Abakumov E., Baranov A., Belov Yu., Krein-type theorems and ordered structure of Cauchy–de Branges spaces, arXiv: 1802.03385
[2] Aleman A., Richter S., “Simply invariant subspaces of $H^2$ of some multiply connected regions”, Integral Equations Operator Theory, 24:2 (1996), 127–155 | DOI | MR | Zbl
[3] Baranov A., “Completeness and Riesz bases of reproducing kernels in model subspaces”, Int. Math. Res. Not. IMRN, 2006 (2006), Article ID 81530 | MR | Zbl
[4] Baranov A., Belov Yu., “Systems of reproducing kernels and their biorthogonal: completeness or incompleteness?”, Int. Math. Res. Not. IMRN, 2011:22 (2011), 5076–5108 | MR | Zbl
[5] Baranov A., Belov Yu., “Spectral synthesis for operators and systems”, Eur. Math. Soc. Newsl., 103 (2017), 11–18 | MR | Zbl
[6] Baranov A., Belov Yu., Synthesable differentiation-invariant subspaces, arXiv: 1607.08392
[7] Baranov A., Belov Yu., Borichev A., “Hereditary completeness for systems of exponentials and reproducing kernels”, Adv. Math., 235 (2013), 525–554 | DOI | MR | Zbl
[8] Baranov A., Belov Yu., Borichev A., “Spectral synthesis in de Branges spaces”, Geom. Funct. Anal., 25:2 (2015), 417–452 | DOI | MR | Zbl
[9] Baranov A., Belov Yu., Borichev A., “Summability properties of Gabor expansions”, J. Funct. Anal., 274:9 (2018), 2532–2552 | DOI | MR | Zbl
[10] Baranov A., Belov Yu., Borichev A., Yakubovich D., “Recent developments in spectral synthesis for exponential systems and for non-self-adjoint operators”, Recent Trends in Analysis, Theta Ser. Adv. Math., 16, Theta Foundation, Bucharest, 2013, 17–34 | MR | Zbl
[11] Baranov A., Yakubovich D., “One-dimensional perturbations of unbounded selfadjoint operators with empty spectrum”, J. Math. Anal. Appl., 424:2 (2015), 1404–1424 | DOI | MR | Zbl
[12] Baranov A., Yakubovich D., “Completeness and spectral synthesis of nonselfadjoint one-dimensional perturbations of selfadjoint operators”, Adv. Math., 302 (2016), 740–798 | DOI | MR | Zbl
[13] Baranov A., Yakubovich D., “Completeness of rank one perturbations of normal operators with lacunary spectrum”, J. Spectral Theory, 8:1 (2018), 1–32 | DOI | MR | Zbl
[14] Belov Yu., “Complementability of exponential systems”, C. R. Math. Acad. Sci. Paris, 353:3 (2015), 215–218 | DOI | MR | Zbl
[15] Belov Yu., Mengestie T., Seip K., “Discrete Hilbert transforms on sparse sequences”, Proc. Lond. Math. Soc. (3), 103:3 (2011), 73–105 | DOI | MR | Zbl
[16] de Branges L., Hilbert spaces of entire functions, Englewood Cliffs, N.J., Prentice-Hall, 1968 | MR | Zbl
[17] Deckard D., Foiaş C., Pearcy C., “Compact operators with root vectors that span”, Proc. Amer. Math. Soc., 76:1 (1979), 101–106 | DOI | MR | Zbl
[18] Fricain E., “Complétude des noyaux reproduisants dans les espaces modèles”, Ann. Inst. Fourier (Grenoble), 52:2 (2002), 661–686 | DOI | MR | Zbl
[19] Garnett J. B., Marshall D. E.,, Harmonic measure, New Math. Monogr., 2, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl
[20] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965
[21] Gubreev G. M., Tarasenko A. A., “Spektralnoe razlozhenie modelnykh operatorov v prostranstvakh de Branzha”, Mat. sb., 201:11 (2010), 41–76 | DOI | MR
[22] Hamburger H., “Über die Zerlegung des Hilbertschen Raumes durch vollstetige lineare Transformationen”, Math. Nachr., 4 (1951), 56–69 | MR
[23] Havin V., Jöricke B., The uncertainty principle in harmonic analysis, Ergeb. Math. Grenzgeb. (3), 28, Springer-Verlag, Berlin, 1994 | MR | Zbl
[24] Hitt D., “Invariant subspaces of $H^2$ of an annulus”, Pacific J. Math., 134:1 (1988), 101–120 | DOI | MR | Zbl
[25] Kapustin V. V., “Odnomernye vozmuscheniya singulyarnykh unitarnykh operatorov”, Zap. nauch. semin. POMI, 232, 1996, 118–122 | MR | Zbl
[26] Koosis P., Introduction to $H^p$ spaces, London Math. Soc. Lecture Notes Ser., 40, Cambridge Univ. Press, Cambridge, 1980 | MR
[27] Koosis P., The Logarithmic integral, v. I, Cambridge Stud. Adv. Math., 12, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl
[28] Krein M. G., “K teorii tselykh funktsii eksponentsialnogo tipa”, Izv. AN SSSR. Ser. mat., 11:4 (1947), 309–326 | MR | Zbl
[29] Levin B. Ya., Raspredelenie kornei tselykh funktsii, GITTL, M., 1956
[30] Levin B. Ya., Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[31] Lunyov A. A., Malamud M. M., “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, J. Spectr. Theory, 5:1 (2015), 17–70 | DOI | MR | Zbl
[32] Lunyov A. A., Malamud M. M., “On spectral synthesis for dissipative Dirac type operators”, Integral Equations Operator Theory, 80:1 (2014), 79–106 | DOI | MR | Zbl
[33] Makarov N., Poltoratski A., “Meromorphic inner functions, Toeplitz kernels, and the uncertainty principle”, Perspectives in Analysis, Math. Phys. Stud., 27, Springer Verlag, Berlin, 2005, 185–252 | DOI | MR | Zbl
[34] Markus A. S., “Zadacha spektralnogo sinteza operatorov s tochechnym spektrom”, Izv. AN SSSR. Ser. mat., 34:3 (1970), 662–688 | MR | Zbl
[35] Nikolskii N. K., “Polnye rasshireniya volterrovykh operatorov”, Izv. AN SSSR. Ser. mat., 33:6 (1969), 1349–1355 | MR | Zbl
[36] Nikolskii N. K., Khruschev S. V., “Funktsionalnaya model i nekotorye zadachi spektralnoi teorii funktsii”, Tr. Mat. in-ta SSSR, 176, 1987, 97–120 | MR | Zbl
[37] Remling C., “Schrödinger operators and de Branges spaces”, J. Funct. Anal., 196:2 (2002), 323–394 | DOI | MR | Zbl
[38] Romanov R., Canonical systems and de Branges spaces, arXiv: 1408.6022
[39] Sarason D., “Nearly invariant subspaces of the backward shift”, Oper. Theory Adv. Appl., 35, Birkhäuser, Basel, 1988, 481–493 | MR
[40] Sherstyukov V. B., “Razlozhenie obratnoi velichiny tseloi funktsii s nulyami v polose v ryad Kreina”, Mat. sb., 202:12 (2011), 137–156 | DOI | MR | Zbl
[41] Wermer J., “On invariant subspaces of normal operators”, Proc. Amer. Math. Soc., 3:2 (1952), 270–277 | DOI | MR | Zbl
[42] Wolff J., “Sur les series $\sum\frac{A_k}{z-\alpha_k}$”, C. R. Acad. Sci. Paris, 173 (1921), 1327–1328 | Zbl