Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_4_a5, author = {C. Nana and B. F. Sehba}, title = {Toeplitz and {Hankel} operators from {Bergman} to analytic {Besov} spaces of tube domains over symmetric cones}, journal = {Algebra i analiz}, pages = {140--178}, publisher = {mathdoc}, volume = {30}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/} }
TY - JOUR AU - C. Nana AU - B. F. Sehba TI - Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones JO - Algebra i analiz PY - 2018 SP - 140 EP - 178 VL - 30 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/ LA - en ID - AA_2018_30_4_a5 ER -
C. Nana; B. F. Sehba. Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones. Algebra i analiz, Tome 30 (2018) no. 4, pp. 140-178. http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/
[1] Békollé D., “The dual of the Bergman space $A^1$ in symmetric Siegel domains of type. II”, Trans. Amer. Soc., 296:2 (1986), 607–619 | DOI | MR | Zbl
[2] Békollé D., Bonami A., “Estimates for the Bergman and Szegő projections in two symmetric domains of $\mathbb C^n$”, Colloq. Math., 68:1 (1995), 81–100 | DOI | MR | Zbl
[3] Békollé D., Bonami A., “Analysis on tube domains over light cones: some extensions of recent results”, Actes des Rencontres d'Analyse Complexe, Poitiers, 2000, 17–37 | MR | Zbl
[4] Békollé D., Bonami A., Garrigós G., “Littlewood–Paley decompositions related to symmetric cones”, IMHOTEP J. Afr. Math. Pures Appl., 3:1 (2000), 11–41 | MR | Zbl
[5] Békollé D., Bonami A., Garrigós G., Nana C., Peloso M. Ricci F., “Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint”, IMHOTEP Afr. Math. Pures Appl., 5:1 (2004), 1–75 | MR
[6] Békollé D., Bonami A., Garrigós G., Ricci F., “Littlewood–Paley decompositions related to symmetric cones and Bergman projections in tube domains”, Proc. London Math. Soc. (3), 89:2 (2004), 317–360 | DOI | MR | Zbl
[7] Békollé D., Bonami A., Garrigós G., Ricci F., Sehba B., “Analytic Besov spaces inequalities and Hardy-type in tube domains over symmetric cones”, J. Reine Angew. Math., 647 (2010), 25–56 | MR | Zbl
[8] Békollé D., Bonami A., Peloso M., Ricci F., “Boundedness of Bergman projections on tube domains over light cones”, Math. Z., 237:1 (2001), 31–59 | DOI | MR | Zbl
[9] Békollé D., Gonessa J., Nana C., Lebesgue mixed norm estimates for Bergman projectors: from tube domains over homogeneous cones to homogeneous siegel domains of type II, arXiv: 1703.07854
[10] Békollé D., Ishi H., Nana C., “Korányi's lemma for homogeneous Siegel domains of type II. Applications and extended results”, Bull. Aust. Math. Soc., 90:1 (2014), 77–89 | DOI | MR | Zbl
[11] Bonami A., Luo L., “On Hankel operators between Bergman spaces on the unit ball”, Houston J. Math., 31:3 (2005), 815–828 | MR | Zbl
[12] Bonami A., Nana C., “Some questions related to the Bergman projection in Symmetric domains”, Adv. Pure Appl. Math., 6:4 (2015), 191–197 | DOI | MR | Zbl
[13] Bourgain J., Demeter C., “The proof of the $l^2$-decoupling conjecture”, Ann. of Math. (2), 182:1 (2015), 351–389 | DOI | MR | Zbl
[14] Debertol D., Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains, Dottorato di Ricerca in Matem., Univ. di Genova, Politecnico di Torino, 2003
[15] Faraut J., Korányi A., Analysis on symmetric cones, Oxford Math. Monogr., Clarendon Press, Oxford, 1994 | MR | Zbl
[16] G. Garrigós, Seeger A., “Plate decompositions for cone multipliers”, Hokkaido Univ. Math. Report Ser., 103 (2005), 13–28
[17] Gonessa J., Espaces de type Bergman dans les domaines homogènes de Siegel de type II: Décomposition atomique des espaces de Bergman et interpolation, Ph. D. Thesis, Univ. Yaoundé I, 2006
[18] Gowda M., “Nonfactorization theorems in weighted Bergman and Hardy spaces on the unit ball of $\mathbb C^n$”, Trans. Amer. Math. Soc., 277:1 (1983), 203–212 | MR | Zbl
[19] Horowitz C., “Factorization theorems for functions in the Bergman spaces”, Duke Math. J., 44:1 (1977), 201–213 | DOI | MR | Zbl
[20] Luecking D., “Embedding theorems for spaces of analytic functions via Khinchine inequality”, Michigan Math. J., 40:2 (1993), 333–358 | DOI | MR | Zbl
[21] Nana C., Sehba B. F., “Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones”, Integral Equations Operator Theory, 83:2 (2015), 151–178 | DOI | MR | Zbl
[22] Pau J., Zhao R., “Carleson measures and Toeplitz operators for weighted Bergman spaces of the unit ball”, Michigan Math. J., 64:4 (2015), 759–796 | DOI | MR | Zbl
[23] Pau J., Zhao R., “Weak factorization and Hankel form for weighted Bergman spaces on the unit ball”, Math. Ann., 363:1–2 (2015), 363–383 | DOI | MR | Zbl
[24] Sehba B. F., “Bergman type operators in tubular domains over symmetric cones”, Proc. Edinb. Math. Soc., 52:2 (2009), 529–544 | DOI | MR | Zbl