Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones
Algebra i analiz, Tome 30 (2018) no. 4, pp. 140-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

The bounded Toeplitz and Hankel operators from weighted Bergman spaces to weighted Besov spaces in tube domains over symmetric cones are characterized. Weak factorization results are deduced for some Bergman spaces in these settings.
Keywords: Bergman projection, Hankel operator, Toeplitz operator, Besov space, symmetric cone.
@article{AA_2018_30_4_a5,
     author = {C. Nana and B. F. Sehba},
     title = {Toeplitz and {Hankel} operators from {Bergman} to analytic {Besov} spaces of tube domains over symmetric cones},
     journal = {Algebra i analiz},
     pages = {140--178},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/}
}
TY  - JOUR
AU  - C. Nana
AU  - B. F. Sehba
TI  - Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones
JO  - Algebra i analiz
PY  - 2018
SP  - 140
EP  - 178
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/
LA  - en
ID  - AA_2018_30_4_a5
ER  - 
%0 Journal Article
%A C. Nana
%A B. F. Sehba
%T Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones
%J Algebra i analiz
%D 2018
%P 140-178
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/
%G en
%F AA_2018_30_4_a5
C. Nana; B. F. Sehba. Toeplitz and Hankel operators from Bergman to analytic Besov spaces of tube domains over symmetric cones. Algebra i analiz, Tome 30 (2018) no. 4, pp. 140-178. http://geodesic.mathdoc.fr/item/AA_2018_30_4_a5/

[1] Békollé D., “The dual of the Bergman space $A^1$ in symmetric Siegel domains of type. II”, Trans. Amer. Soc., 296:2 (1986), 607–619 | DOI | MR | Zbl

[2] Békollé D., Bonami A., “Estimates for the Bergman and Szegő projections in two symmetric domains of $\mathbb C^n$”, Colloq. Math., 68:1 (1995), 81–100 | DOI | MR | Zbl

[3] Békollé D., Bonami A., “Analysis on tube domains over light cones: some extensions of recent results”, Actes des Rencontres d'Analyse Complexe, Poitiers, 2000, 17–37 | MR | Zbl

[4] Békollé D., Bonami A., Garrigós G., “Littlewood–Paley decompositions related to symmetric cones”, IMHOTEP J. Afr. Math. Pures Appl., 3:1 (2000), 11–41 | MR | Zbl

[5] Békollé D., Bonami A., Garrigós G., Nana C., Peloso M. Ricci F., “Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint”, IMHOTEP Afr. Math. Pures Appl., 5:1 (2004), 1–75 | MR

[6] Békollé D., Bonami A., Garrigós G., Ricci F., “Littlewood–Paley decompositions related to symmetric cones and Bergman projections in tube domains”, Proc. London Math. Soc. (3), 89:2 (2004), 317–360 | DOI | MR | Zbl

[7] Békollé D., Bonami A., Garrigós G., Ricci F., Sehba B., “Analytic Besov spaces inequalities and Hardy-type in tube domains over symmetric cones”, J. Reine Angew. Math., 647 (2010), 25–56 | MR | Zbl

[8] Békollé D., Bonami A., Peloso M., Ricci F., “Boundedness of Bergman projections on tube domains over light cones”, Math. Z., 237:1 (2001), 31–59 | DOI | MR | Zbl

[9] Békollé D., Gonessa J., Nana C., Lebesgue mixed norm estimates for Bergman projectors: from tube domains over homogeneous cones to homogeneous siegel domains of type II, arXiv: 1703.07854

[10] Békollé D., Ishi H., Nana C., “Korányi's lemma for homogeneous Siegel domains of type II. Applications and extended results”, Bull. Aust. Math. Soc., 90:1 (2014), 77–89 | DOI | MR | Zbl

[11] Bonami A., Luo L., “On Hankel operators between Bergman spaces on the unit ball”, Houston J. Math., 31:3 (2005), 815–828 | MR | Zbl

[12] Bonami A., Nana C., “Some questions related to the Bergman projection in Symmetric domains”, Adv. Pure Appl. Math., 6:4 (2015), 191–197 | DOI | MR | Zbl

[13] Bourgain J., Demeter C., “The proof of the $l^2$-decoupling conjecture”, Ann. of Math. (2), 182:1 (2015), 351–389 | DOI | MR | Zbl

[14] Debertol D., Besov spaces and boundedness of weighted Bergman projections over symmetric tube domains, Dottorato di Ricerca in Matem., Univ. di Genova, Politecnico di Torino, 2003

[15] Faraut J., Korányi A., Analysis on symmetric cones, Oxford Math. Monogr., Clarendon Press, Oxford, 1994 | MR | Zbl

[16] G. Garrigós, Seeger A., “Plate decompositions for cone multipliers”, Hokkaido Univ. Math. Report Ser., 103 (2005), 13–28

[17] Gonessa J., Espaces de type Bergman dans les domaines homogènes de Siegel de type II: Décomposition atomique des espaces de Bergman et interpolation, Ph. D. Thesis, Univ. Yaoundé I, 2006

[18] Gowda M., “Nonfactorization theorems in weighted Bergman and Hardy spaces on the unit ball of $\mathbb C^n$”, Trans. Amer. Math. Soc., 277:1 (1983), 203–212 | MR | Zbl

[19] Horowitz C., “Factorization theorems for functions in the Bergman spaces”, Duke Math. J., 44:1 (1977), 201–213 | DOI | MR | Zbl

[20] Luecking D., “Embedding theorems for spaces of analytic functions via Khinchine inequality”, Michigan Math. J., 40:2 (1993), 333–358 | DOI | MR | Zbl

[21] Nana C., Sehba B. F., “Carleson embeddings and two operators on Bergman spaces of tube domains over symmetric cones”, Integral Equations Operator Theory, 83:2 (2015), 151–178 | DOI | MR | Zbl

[22] Pau J., Zhao R., “Carleson measures and Toeplitz operators for weighted Bergman spaces of the unit ball”, Michigan Math. J., 64:4 (2015), 759–796 | DOI | MR | Zbl

[23] Pau J., Zhao R., “Weak factorization and Hankel form for weighted Bergman spaces on the unit ball”, Math. Ann., 363:1–2 (2015), 363–383 | DOI | MR | Zbl

[24] Sehba B. F., “Bergman type operators in tubular domains over symmetric cones”, Proc. Edinb. Math. Soc., 52:2 (2009), 529–544 | DOI | MR | Zbl