The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem
Algebra i analiz, Tome 30 (2018) no. 4, pp. 107-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $n$ be a large integer, and let $G$ be the standard Gaussian vector in $\mathbb R^n$. Paouris, Valettas and Zinn (2015) showed that for all $p\in[1,c\log n]$, the variance of the $\ell_p^n$-norm of $G$ is equivalent, up to a constant multiple, to $\frac{2^p}pn^{2/p-1}$, and for $p\in[C\log n,\infty]$, to $(\log n)^{-1}$. Here, $C,c>0$ are universal constants. That result left open the question of estimating the variance for $p$ logarithmic in $n$. In this paper, the question is resolved by providing a complete characterization of $\mathbf{Var}\|G\|_p$ for all $p$. It is shown that there exist two transition points (windows) in which the behavior of $\mathbf{Var}\|G\|_p$ changes significantly. Some implications of the results are discussed in the context of random Dvoretzky's theorem for $\ell_p^n$.
Keywords: $\ell_p^n$ spaces, variance of $\ell_p$ norm, Dvoretzky's theorem, order statistics.
@article{AA_2018_30_4_a4,
     author = {A. Lytova and K. Tikhomirov},
     title = {The variance of the $\ell_p^n$-norm of the {Gaussian} vector, and {Dvoretzky's} theorem},
     journal = {Algebra i analiz},
     pages = {107--139},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_4_a4/}
}
TY  - JOUR
AU  - A. Lytova
AU  - K. Tikhomirov
TI  - The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem
JO  - Algebra i analiz
PY  - 2018
SP  - 107
EP  - 139
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_4_a4/
LA  - en
ID  - AA_2018_30_4_a4
ER  - 
%0 Journal Article
%A A. Lytova
%A K. Tikhomirov
%T The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem
%J Algebra i analiz
%D 2018
%P 107-139
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_4_a4/
%G en
%F AA_2018_30_4_a4
A. Lytova; K. Tikhomirov. The variance of the $\ell_p^n$-norm of the Gaussian vector, and Dvoretzky's theorem. Algebra i analiz, Tome 30 (2018) no. 4, pp. 107-139. http://geodesic.mathdoc.fr/item/AA_2018_30_4_a4/

[1] Artstein-Avidan S., Giannopoulos A., Milman V. D., Asymptotic geometric analysis, Part I, Math. Surveys Monogr., 202, Amer. Math. Soc., Providence, RI, 2015 | DOI | MR | Zbl

[2] Boucheron S., Lugosi G., Massart P., Concentration inequalities. A nonasymptotic theory of independence, Oxford Univ. Press, Oxford, 2013 | MR | Zbl

[3] Boucheron S., Thomas M., “Concentration inequalities for order statistics”, Electron. Commun. Probab., 17 (2012), 51, 12 pp. | DOI | MR | Zbl

[4] Chasapis G., Giannopoulos A., “Euclidean regularization in John's position”, Indiana Univ. Math. J., 65:6 (2016), 1877–1890 | DOI | MR | Zbl

[5] Chatterjee S., Superconcentration and related topics, Springer Monogr. Math., Springer, Cham, 2014 | DOI | MR | Zbl

[6] Chernoff H., “A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations”, Ann. Math. Statistics, 23 (1952), 493–507 | DOI | MR | Zbl

[7] Cordero-Erausquin D., Ledoux M., “Hypercontractive measures. Talagrand's inequality, and influences”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 2050, Springer, Heidelberg, 169–189 | DOI | MR | Zbl

[8] David H. A., Order statistics, Wiley Ser. Probab. Math. Stat., Wiley, New York, 1981 | MR | Zbl

[9] Dvoretzky A., “Some results on convex bodies and Banach spaces”, Proc. Internat. Sympos. Linear Spaces (Jerusalem, 1960), Jerusalem Acad. Press, Jerusalem, 1961, 123–160 | MR | Zbl

[10] Feller W., An introduction to probability theory and its applications, v. 1, John Wiley Sons, New York, 1968 | MR | Zbl

[11] Fresen D. J., “Euclidean arrangements in Banach spaces”, Studia Math., 227:1 (2015), 55–76 | DOI | MR | Zbl

[12] Guédon O., “Gaussian version of a theorem of Milman and Schechtman”, Positivity, 1:1 (1997), 1–5 | DOI | MR | Zbl

[13] Gordon Y., “Some inequalities for Gaussian processes and applications”, Israel J. Math., 50:4 (1985), 265–289 | DOI | MR | Zbl

[14] Gordon Y., Guédon O., Meyer M., “An isomorphic Dvoretzky's theorem for convex bodies”, Studia Math., 127:2 (1998), 191–200 | MR | Zbl

[15] Huang H., Wei F., “Upper bound for the Dvoretzky dimension in Milman–Schechtman theorem”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 2169, Springer, Cham, 2017, 181–186 | DOI | MR | Zbl

[16] Klartag B., Vershynin R., “Small ball probability and Dvoretzky's theorem”, Israel J. Math., 157 (2007), 193–207 | DOI | MR | Zbl

[17] Litvak A., Mankiewicz P., Tomczak-Jaegermann N., “Randomized isomorphic Dvoretzky theorem”, C. R. Math. Acad. Sci. Paris, 335:4 (2002), 345–350 | DOI | MR | Zbl

[18] Milman V. D., “Novoe dokazatelstvo teoremy A. Dvoretskogo o secheniyakh vypuklykh tel”, Funkts. anal. i ego pril., 5:4 (1971), 28–37 | MR | Zbl

[19] Milman V. D., Schechtman G., Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Math., 1200, Springer, Berlin, 1986 | MR | Zbl

[20] Milman V. D., Schechtman G., “An “isomorphic” version of Dvoretzky's theorem”, C. R. Acad. Sci. Paris Sér. I Math., 321:5 (1995), 541–544 | MR | Zbl

[21] Milman V. D., Schechtman G., “Global versus local asymptotic theories of finite-dimensional normed spaces”, Duke Math. J., 90:1 (1997), 73–93 | DOI | MR | Zbl

[22] Naor A., “The surface measure and cone measure on the sphere of $l_p^n$”, Trans. Amer. Math. Soc., 359:3 (2007), 1045–1079 | DOI | MR | Zbl

[23] Paouris G., Valettas P., On Dvoretzky's theorem for subspaces of $L_p$, arXiv: 1510.07289 | MR

[24] Paouris G., Valettas P., A Gaussian small deviation inequality for convex functions, arXiv: 1611.01723 | MR

[25] Paouris G., Valettas P., Variance estimates and almost Euclidean structure, arXiv: 1703.10244

[26] Paouris G., Valettas P., Dichotomies, structure, and concentration results, arXiv: 1708.05149 | MR

[27] Paouris G., Valettas P., Zinn J., “Random version of Dvoretzky's theorem in $\ell_p^n$”, Stochastic Proces. Appl., 127:10 (2017), 3187–3227 | DOI | MR | Zbl

[28] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Tracts in Math., 94, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[29] Schechtman G., “A remark concerning the dependence on $\epsilon$ in Dvoretzky's theorem”, Geometric Aspects of Functional Analysis (1987–88), Lecture Notes in Math., 1376, Springer, Berlin, 274–277 | DOI | MR

[30] Schechtman G., “Two observations regarding embedding subsets of Euclidean spaces in normed spaces”, Adv. Math., 200:1 (2006), 125–135 | DOI | MR | Zbl

[31] Schechtman G., “The random version of Dvoretzky's theorem in $\ell\sp n\sb \infty$”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 1910, Springer, Berlin, 2007, 265–270 | DOI | MR | Zbl

[32] Schechtman G., “Euclidean sections of convex bodies”, Asymptotic Geometric Analysis, Fields Inst. Commun., 68, Springer, New York, 2013, 271–288 | DOI | MR | Zbl

[33] Talagrand M., “On Russo's approximate zero-one law”, Ann. Probab., 22:3 (1994), 1576–1587 | DOI | MR | Zbl

[34] Tikhomirov K. E., “The Randomized Dvoretzky's theorem in $\ell_\infty^n$ and the $\chi$-distribution”, Geometric Aspects of Functional Analysis, Lecture Notes in Math., 2116, Springer, Cham, 2014 | MR | Zbl

[35] Tikhomirov K., “Superconcentration, and randomized Dvoretzky's theorem for spaces with 1-unconditional bases”, J. Funct. Anal., 274:1 (2018), 121–151 | DOI | MR | Zbl