Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_3_a8, author = {D. Robert}, title = {On some properties of the time evolution of quadratic open quantum systems}, journal = {Algebra i analiz}, pages = {140--168}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a8/} }
D. Robert. On some properties of the time evolution of quadratic open quantum systems. Algebra i analiz, Tome 30 (2018) no. 3, pp. 140-168. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a8/
[1] Agarwal G. S., “Entropy, the wigner distribution function, and the approach to equilibrium of a system of coupled harmonic oscillators”, Phys. Rev. A, 3 (1971), 828–831 | DOI
[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985 | MR
[3] Berezin F. A., Shubin M. A., Uravneniya Shrëdingera, MGU, M., 1983
[4] Bhatia R., Matrix analysis, Grad. Texts in Math., 169, Springer, New York, 1997 | DOI | MR
[5] Breuer H. P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, New York, 2002 | MR | Zbl
[6] Blume-Kohout R., Zurek W. H., “Decoherence form chaotic environment: an upside down “oscillator” as a model”, Phys. Rev. A, 68 (2003), 032104 | DOI | MR
[7] Caldeira A. O., Leggett A. J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31 (1985), 1059–1066 | DOI
[8] Combescure M., Robert D., Coherent states and applications in mathematical physics, Springer-Verlag, Dordreht, 2012 | MR | Zbl
[9] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976 | MR | Zbl
[10] Dodonov V. V., Man'ko O. V., Man'ko V. I., “Quantum non-stationary oscillators: models and applications”, J. Russian Laser Research, 16:1 (1995), 1–56 | DOI
[11] Dodonov V. V., “Parametric excitation and generation of nonclassical states in linear media”, Theory of Non classical States of Light, Taylor Francis, London, 2003, 153–218
[12] Eisert J., Plenio M. B., “Quantum and classical correlations in quantum brownian motion”, Phys. Rev. Lett., 89:13 (2002), 137902 | DOI | MR | Zbl
[13] Feynman R. P., Vernon F. L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys., 24 (1963), 118–173 | DOI | MR
[14] Fleming C. H., Hu B. L., Roura A., “Exact analytical solutions to the master equation of Brownian motion for a general environment”, Ann. Phys., 326:5 (2011), 1207–1258 | DOI | MR | Zbl
[15] Folland G., Harmonic analysis in phase space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, 1989 | MR | Zbl
[16] Ford G. W., Kac M., “On the quantum Langevin equation”, J. Statist. Phys., 46:5–6 (1987), 803–810 | DOI | MR | Zbl
[17] Ford G. W., Kac M., Mazur P., “Statistical mechanics of assemblies of coupled oscillators”, J. Math. Phys., 6 (1965), 504–515 | DOI | MR | Zbl
[18] Ford G. W., O'Connell R. F., “Exact solution of the Hu–Paz–Zhang master equation”, Phys. Rev. D, 64 (2001), 105020 | DOI | MR
[19] Gokhberg I., Krein M. G.,, Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[20] Halliwell J. J., Yu T., “Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion”, Phys. Rev. D, 53:4 (1966), 2012–2019 | DOI | MR
[21] Gerschgorin S., “Über die Abgrenzung der Eigenwerte einer Matrix”, Izv. AN SSSR. Ser. mat., 1931, no. 6, 749–754 | Zbl
[22] Hörmander L., “Symplectic classification of quadratic forms, and general Mehler formulas”, Math. Z., 219:3 (1995), 413–449 | DOI | MR | Zbl
[23] Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1966), 1–8 | MR
[24] Hu B. L., Paz J. P., Zhang Y., “Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45:8 (1992), 2843–2861 | DOI | MR | Zbl
[25] Joos E., Zeh H. D., “The emergence of classical properties through interaction with the environment”, Z. Phys. B Condensed Matter, 59 (1985), 223–243 | DOI
[26] Hornberger K., “Introduction to decoherence, entangement and decoherence”, Lecture Notes in Phys., 768, Springer, Berlin, 2009, 221–276 | DOI | MR | Zbl
[27] Maspero A., Robert D., “On time dependent Schrödinger eqiations: global well-posedness and growth of Sobolev norms”, J. Funct. Anal., 273:2 (2017), 721–781 | DOI | MR | Zbl
[28] Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[29] Robert D., Time evolution of states for open quantum systems. The quadratic case, 2012, arXiv: 1208.1598v2[math-ph]
[30] Schlosshauer M., Decoherence and the quantum-to-classical transition, Springer-Verlag, Heidelberg, 2007 | MR
[31] Simon R., Chaturvedi S., Srinivasan V., “Congruences and canonical forms for a positive matrix: application to Schweinler–Wigner extremum principle”, J. Math. Phys., 40:7 (1999), 3632–3643 | DOI | MR
[32] Simon R., Susarshan E. C. G., Mukada N., “Gaussian–Wigner distributions: a complete characterization”, Phys. Lett. A, 124:4–5 (1987), 223–228 | DOI | MR
[33] Simon R., “Peres–Horodecki separability criterion for continuous variable systems”, Phys. Rev. Lett., 84:12 (2000), 2726–2729 | DOI | MR
[34] Schrödinger E., “Discussion of probability Relations between Separated Systems”, Proc. Cambridge Philos. Soc., 31 (1935), 555–563 | DOI | Zbl
[35] Werner R. F., Wolf M. M., “Bound entangled Gaussian states”, Phys. Rev. Lett., 86:16 (2001), 3658–3661 | DOI
[36] Williamson J., “On algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR
[37] Zurek W. H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse”, Phys. Rev. D, 24:6 (1981), 1516–1525 | DOI | MR