On some properties of the time evolution of quadratic open quantum systems
Algebra i analiz, Tome 30 (2018) no. 3, pp. 140-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is aimed at revisiting some mathematical properties that appear in open quantum systems with quadratic Hamiltonians. In particular, a discussion is included of some properties related to the notions of purity, separability, and entanglement, introduced by physicists in quantum information theory. The results are applied, among other things, to coupled harmonic oscillators appearing in the quantum Brownian motion. Moreover, the master equation is revisited, which was obtained for the time evolution of an open system coupled to an environment modeled by any quadratic Hamiltonians.
Keywords: quantum information theory, entanglement, master equation, Schrödinger equation, quantum Brownian motion.
@article{AA_2018_30_3_a8,
     author = {D. Robert},
     title = {On some properties of the time evolution of quadratic open quantum systems},
     journal = {Algebra i analiz},
     pages = {140--168},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a8/}
}
TY  - JOUR
AU  - D. Robert
TI  - On some properties of the time evolution of quadratic open quantum systems
JO  - Algebra i analiz
PY  - 2018
SP  - 140
EP  - 168
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a8/
LA  - en
ID  - AA_2018_30_3_a8
ER  - 
%0 Journal Article
%A D. Robert
%T On some properties of the time evolution of quadratic open quantum systems
%J Algebra i analiz
%D 2018
%P 140-168
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a8/
%G en
%F AA_2018_30_3_a8
D. Robert. On some properties of the time evolution of quadratic open quantum systems. Algebra i analiz, Tome 30 (2018) no. 3, pp. 140-168. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a8/

[1] Agarwal G. S., “Entropy, the wigner distribution function, and the approach to equilibrium of a system of coupled harmonic oscillators”, Phys. Rev. A, 3 (1971), 828–831 | DOI

[2] Arnold V. I., Kozlov V. V., Neishtadt A. I., Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki, VINITI, M., 1985 | MR

[3] Berezin F. A., Shubin M. A., Uravneniya Shrëdingera, MGU, M., 1983

[4] Bhatia R., Matrix analysis, Grad. Texts in Math., 169, Springer, New York, 1997 | DOI | MR

[5] Breuer H. P., Petruccione F., The theory of open quantum systems, Oxford Univ. Press, New York, 2002 | MR | Zbl

[6] Blume-Kohout R., Zurek W. H., “Decoherence form chaotic environment: an upside down “oscillator” as a model”, Phys. Rev. A, 68 (2003), 032104 | DOI | MR

[7] Caldeira A. O., Leggett A. J., “Influence of damping on quantum interference: An exactly soluble model”, Phys. Rev. A, 31 (1985), 1059–1066 | DOI

[8] Combescure M., Robert D., Coherent states and applications in mathematical physics, Springer-Verlag, Dordreht, 2012 | MR | Zbl

[9] Davies E. B., Quantum theory of open systems, Acad. Press, London, 1976 | MR | Zbl

[10] Dodonov V. V., Man'ko O. V., Man'ko V. I., “Quantum non-stationary oscillators: models and applications”, J. Russian Laser Research, 16:1 (1995), 1–56 | DOI

[11] Dodonov V. V., “Parametric excitation and generation of nonclassical states in linear media”, Theory of Non classical States of Light, Taylor Francis, London, 2003, 153–218

[12] Eisert J., Plenio M. B., “Quantum and classical correlations in quantum brownian motion”, Phys. Rev. Lett., 89:13 (2002), 137902 | DOI | MR | Zbl

[13] Feynman R. P., Vernon F. L., “The theory of a general quantum system interacting with a linear dissipative system”, Ann. Phys., 24 (1963), 118–173 | DOI | MR

[14] Fleming C. H., Hu B. L., Roura A., “Exact analytical solutions to the master equation of Brownian motion for a general environment”, Ann. Phys., 326:5 (2011), 1207–1258 | DOI | MR | Zbl

[15] Folland G., Harmonic analysis in phase space, Ann. Math. Stud., 122, Princeton Univ. Press, Princeton, 1989 | MR | Zbl

[16] Ford G. W., Kac M., “On the quantum Langevin equation”, J. Statist. Phys., 46:5–6 (1987), 803–810 | DOI | MR | Zbl

[17] Ford G. W., Kac M., Mazur P., “Statistical mechanics of assemblies of coupled oscillators”, J. Math. Phys., 6 (1965), 504–515 | DOI | MR | Zbl

[18] Ford G. W., O'Connell R. F., “Exact solution of the Hu–Paz–Zhang master equation”, Phys. Rev. D, 64 (2001), 105020 | DOI | MR

[19] Gokhberg I., Krein M. G.,, Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[20] Halliwell J. J., Yu T., “Alternative derivation of the Hu–Paz–Zhang master equation of quantum Brownian motion”, Phys. Rev. D, 53:4 (1966), 2012–2019 | DOI | MR

[21] Gerschgorin S., “Über die Abgrenzung der Eigenwerte einer Matrix”, Izv. AN SSSR. Ser. mat., 1931, no. 6, 749–754 | Zbl

[22] Hörmander L., “Symplectic classification of quadratic forms, and general Mehler formulas”, Math. Z., 219:3 (1995), 413–449 | DOI | MR | Zbl

[23] Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1966), 1–8 | MR

[24] Hu B. L., Paz J. P., Zhang Y., “Quantum Brownian motion in a general environment: exact master equation with nonlocal dissipation and colored noise”, Phys. Rev. D, 45:8 (1992), 2843–2861 | DOI | MR | Zbl

[25] Joos E., Zeh H. D., “The emergence of classical properties through interaction with the environment”, Z. Phys. B Condensed Matter, 59 (1985), 223–243 | DOI

[26] Hornberger K., “Introduction to decoherence, entangement and decoherence”, Lecture Notes in Phys., 768, Springer, Berlin, 2009, 221–276 | DOI | MR | Zbl

[27] Maspero A., Robert D., “On time dependent Schrödinger eqiations: global well-posedness and growth of Sobolev norms”, J. Funct. Anal., 273:2 (2017), 721–781 | DOI | MR | Zbl

[28] Nielsen M. A., Chuang I. L., Quantum computation and quantum information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[29] Robert D., Time evolution of states for open quantum systems. The quadratic case, 2012, arXiv: 1208.1598v2[math-ph]

[30] Schlosshauer M., Decoherence and the quantum-to-classical transition, Springer-Verlag, Heidelberg, 2007 | MR

[31] Simon R., Chaturvedi S., Srinivasan V., “Congruences and canonical forms for a positive matrix: application to Schweinler–Wigner extremum principle”, J. Math. Phys., 40:7 (1999), 3632–3643 | DOI | MR

[32] Simon R., Susarshan E. C. G., Mukada N., “Gaussian–Wigner distributions: a complete characterization”, Phys. Lett. A, 124:4–5 (1987), 223–228 | DOI | MR

[33] Simon R., “Peres–Horodecki separability criterion for continuous variable systems”, Phys. Rev. Lett., 84:12 (2000), 2726–2729 | DOI | MR

[34] Schrödinger E., “Discussion of probability Relations between Separated Systems”, Proc. Cambridge Philos. Soc., 31 (1935), 555–563 | DOI | Zbl

[35] Werner R. F., Wolf M. M., “Bound entangled Gaussian states”, Phys. Rev. Lett., 86:16 (2001), 3658–3661 | DOI

[36] Williamson J., “On algebraic problem concerning the normal forms of linear dynamical systems”, Amer. J. Math., 58:1 (1936), 141–163 | DOI | MR

[37] Zurek W. H., “Pointer basis of quantum apparatus: into what mixture does the wave packet collapse”, Phys. Rev. D, 24:6 (1981), 1516–1525 | DOI | MR