Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_3_a6, author = {V. Kozlov and N. G. Kuznetsov}, title = {A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity}, journal = {Algebra i analiz}, pages = {112--128}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/} }
TY - JOUR AU - V. Kozlov AU - N. G. Kuznetsov TI - A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity JO - Algebra i analiz PY - 2018 SP - 112 EP - 128 VL - 30 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/ LA - en ID - AA_2018_30_3_a6 ER -
%0 Journal Article %A V. Kozlov %A N. G. Kuznetsov %T A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity %J Algebra i analiz %D 2018 %P 112-128 %V 30 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/ %G en %F AA_2018_30_3_a6
V. Kozlov; N. G. Kuznetsov. A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity. Algebra i analiz, Tome 30 (2018) no. 3, pp. 112-128. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/
[1] Appell J., Zabrejko P. P., Nonlinear superposition operators, Cambridge Tracts Math., 95, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[2] Carathéodory K., Vorlesungen über reelle Funktionen, Chelsea Pub. Co., New York, 1948 | MR
[3] Constantin A., Strauss W., “Exact steady periodic water waves with vorticity”, Comm. Pure Appl. Math., 57:4 (2004), 481–527 | DOI | MR | Zbl
[4] Constantin A., Strauss W., “Periodic traveling gravity water waves with discontinuous vorticity”, Arch. Ration. Mech. Anal., 202:1 (2011), 133–175 | DOI | MR | Zbl
[5] Constantin A., Strauss W., Varvaruca E., “Global bifurcation of steady gravity water waves with critical layers”, Acta Math., 217:2 (2016), 195–262 | DOI | MR | Zbl
[6] Dubreil-Jacotin M.-L., “Sur la détermination rigoureuse des ondes permanentes peŕiodiques d'ampleur finie”, J. Math. Pures Appl., 13 (1934), 217–291 | MR | Zbl
[7] Gidas B., Ni W.-M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68:3 (1979), 209–243 | DOI | MR | Zbl
[8] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | Zbl
[9] Keller J. B., “On solutions of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl
[10] Kozlov V., Kuznetsov N., “Steady free-surface vortical flows parallel to the horizontal bottom”, Quart. J. Mech. Appl. Math., 64:3 (2011), 371–399 | DOI | MR | Zbl
[11] Kozlov V., Kuznetsov N., “Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents”, Arch. Ration. Mech. Anal., 214:3 (2014), 971–1018 | DOI | MR | Zbl
[12] Kozlov V., Kuznetsov N., “Bounds for solutions to the problem of steady water waves with vorticity”, Quart. J. Mech. Appl. Math., 70:4 (2017), 497–518 | DOI | MR
[13] Kozlov V., Kuznetsov N., Lokharu E., “On bounds and non-existence in the problem of steady waves with vorticity”, J. Fluid Mech., 765 (2015), R1, 13 pp. | DOI | MR | Zbl
[14] Kozlov V., Kuznetsov N., Lokharu E., “On the Benjamin–Lighthill conjecture for water waves with vorticity”, J. Fluid Mech., 825 (2017), 961–1001 | DOI | MR | Zbl
[15] Kurata K., “Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana Univ. Math. J., 43:2 (1994), 411–440 | DOI | MR | Zbl
[16] Lavrentev M., Shabat V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1977 | MR
[17] Martin C. I., Matioc B.-V., “Steady periodic water waves with unbounded vorticity: equivalent formulations and existence results”, J. Nonlinear Sci., 24:4 (2014), 633–659 | DOI | MR | Zbl
[18] Osserman R., “On the inequality $\Delta u\geq f(u)$”, Pacific J. Math., 7 (1957), 1641–1647 | DOI | MR | Zbl
[19] Strauss W., “Steady water waves”, Bull. Amer. Math. Soc., 47:4 (2010), 671–694 | DOI | MR | Zbl
[20] Sabina de Lis J. C., “Hopf maximum principle revisited”, Electron. J. Diffential Equations, 2015 (2015), No. 115, 9 pp. | MR
[21] Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl
[22] Vanden-Broeck J.-M., “Periodic waves with constant vorticity in water of infinite depth”, IMA J. Appl. Math., 56 (1996), 207–217 | DOI | Zbl