A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity
Algebra i analiz, Tome 30 (2018) no. 3, pp. 112-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

A comparison theorem is proved for a pair of solutions that satisfy opposite nonlinear differential inequalities in a weak sense. The nonlinearity is of the form $f(u)$ with $f$ belonging to the class $L^p_\mathrm{loc}$ and the solutions are assumed to have nonvanishing gradients in the domain, where the inequalities are considered. The comparison theorem is applied to the problem describing steady, periodic water waves with vorticity in the case of arbitrary free-surface profiles including overhanging ones. Bounds for these profiles as well as streamfunctions and admissible values of the total head are obtained.
Keywords: comparison theorem, nonlinear differential inequality, partial hodograph transform in $n$ dimensions, periodic steady water waves with vorticity, streamfunction.
@article{AA_2018_30_3_a6,
     author = {V. Kozlov and N. G. Kuznetsov},
     title = {A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity},
     journal = {Algebra i analiz},
     pages = {112--128},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/}
}
TY  - JOUR
AU  - V. Kozlov
AU  - N. G. Kuznetsov
TI  - A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity
JO  - Algebra i analiz
PY  - 2018
SP  - 112
EP  - 128
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/
LA  - en
ID  - AA_2018_30_3_a6
ER  - 
%0 Journal Article
%A V. Kozlov
%A N. G. Kuznetsov
%T A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity
%J Algebra i analiz
%D 2018
%P 112-128
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/
%G en
%F AA_2018_30_3_a6
V. Kozlov; N. G. Kuznetsov. A comparison theorem for super- and subsolutions of $\nabla^2u+f(u)=0$ and its application to water waves with vorticity. Algebra i analiz, Tome 30 (2018) no. 3, pp. 112-128. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a6/

[1] Appell J., Zabrejko P. P., Nonlinear superposition operators, Cambridge Tracts Math., 95, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[2] Carathéodory K., Vorlesungen über reelle Funktionen, Chelsea Pub. Co., New York, 1948 | MR

[3] Constantin A., Strauss W., “Exact steady periodic water waves with vorticity”, Comm. Pure Appl. Math., 57:4 (2004), 481–527 | DOI | MR | Zbl

[4] Constantin A., Strauss W., “Periodic traveling gravity water waves with discontinuous vorticity”, Arch. Ration. Mech. Anal., 202:1 (2011), 133–175 | DOI | MR | Zbl

[5] Constantin A., Strauss W., Varvaruca E., “Global bifurcation of steady gravity water waves with critical layers”, Acta Math., 217:2 (2016), 195–262 | DOI | MR | Zbl

[6] Dubreil-Jacotin M.-L., “Sur la détermination rigoureuse des ondes permanentes peŕiodiques d'ampleur finie”, J. Math. Pures Appl., 13 (1934), 217–291 | MR | Zbl

[7] Gidas B., Ni W.-M., Nirenberg L., “Symmetry and related properties via the maximum principle”, Comm. Math. Phys., 68:3 (1979), 209–243 | DOI | MR | Zbl

[8] Gilbarg D., Trudinger N. S., Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, Springer-Verlag, Berlin, 1983 | MR | Zbl

[9] Keller J. B., “On solutions of $\Delta u=f(u)$”, Comm. Pure Appl. Math., 10 (1957), 503–510 | DOI | MR | Zbl

[10] Kozlov V., Kuznetsov N., “Steady free-surface vortical flows parallel to the horizontal bottom”, Quart. J. Mech. Appl. Math., 64:3 (2011), 371–399 | DOI | MR | Zbl

[11] Kozlov V., Kuznetsov N., “Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents”, Arch. Ration. Mech. Anal., 214:3 (2014), 971–1018 | DOI | MR | Zbl

[12] Kozlov V., Kuznetsov N., “Bounds for solutions to the problem of steady water waves with vorticity”, Quart. J. Mech. Appl. Math., 70:4 (2017), 497–518 | DOI | MR

[13] Kozlov V., Kuznetsov N., Lokharu E., “On bounds and non-existence in the problem of steady waves with vorticity”, J. Fluid Mech., 765 (2015), R1, 13 pp. | DOI | MR | Zbl

[14] Kozlov V., Kuznetsov N., Lokharu E., “On the Benjamin–Lighthill conjecture for water waves with vorticity”, J. Fluid Mech., 825 (2017), 961–1001 | DOI | MR | Zbl

[15] Kurata K., “Continuity and Harnack's inequality for solutions of elliptic partial differential equations of second order”, Indiana Univ. Math. J., 43:2 (1994), 411–440 | DOI | MR | Zbl

[16] Lavrentev M., Shabat V., Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1977 | MR

[17] Martin C. I., Matioc B.-V., “Steady periodic water waves with unbounded vorticity: equivalent formulations and existence results”, J. Nonlinear Sci., 24:4 (2014), 633–659 | DOI | MR | Zbl

[18] Osserman R., “On the inequality $\Delta u\geq f(u)$”, Pacific J. Math., 7 (1957), 1641–1647 | DOI | MR | Zbl

[19] Strauss W., “Steady water waves”, Bull. Amer. Math. Soc., 47:4 (2010), 671–694 | DOI | MR | Zbl

[20] Sabina de Lis J. C., “Hopf maximum principle revisited”, Electron. J. Diffential Equations, 2015 (2015), No. 115, 9 pp. | MR

[21] Trudinger N. S., “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. Pure Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl

[22] Vanden-Broeck J.-M., “Periodic waves with constant vorticity in water of infinite depth”, IMA J. Appl. Math., 56 (1996), 207–217 | DOI | Zbl