Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_3_a3, author = {E. D. Gluskin}, title = {Symplectic capacity and the main triangle projection}, journal = {Algebra i analiz}, pages = {66--75}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a3/} }
E. D. Gluskin. Symplectic capacity and the main triangle projection. Algebra i analiz, Tome 30 (2018) no. 3, pp. 66-75. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a3/
[1] Hofer H., Zehnder E., Symplectic invariants and Hamiltonian dynamics, Birkhäuser Adv. Texts, Birkhäuser Verlag, Basel, 1994 | MR | Zbl
[2] Ostrover Y., “When symplectic topology meets Banach space geometry”, Proc. Intern. Congress Math. (Seoul, 2014), v. II, Kyung Moon Sa, Seoul, 2014, 959–981 | MR | Zbl
[3] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math., 82:2 (1985), 307–347 | DOI | MR | Zbl
[4] Ekeland I., Hofer H., “Symplectic topology and Hamiltonian dynamics”, Math. Z., 200:3 (1989), 355–378 | DOI | MR | Zbl
[5] Hofer H., Zehnder E., “A new capacity for symplectic manifolds”, Analysis, et cetera, Acad. Press, Boston, MA, 1990, 405–427 | DOI | MR
[6] Gluskin E. D., Ostrover Y., “Asymptotic equivalence of symplectic capacities”, Comment. Math. Helv., 91:1 (2016), 131–144 | DOI | MR | Zbl
[7] Kwapień S., Pełczyński A., “The main triangle projection in matrix spaces and its applications”, Studia Math., 34:1 (1970), 43–68 | DOI | MR | Zbl
[8] Litvak A. E., “Svoistva operatora diskretnogo integrirovaniya i nekotorye ego prilozheniya”, Vestn. S.-Peterburg. un-ta. Ser. mat., mekh., astronom., 1992, no. 4, 28–30 | Zbl
[9] Weinstein A., “Periodic orbits for convex Hamiltonian systems”, Ann. of Math. (2), 108:3 (1978), 507–518 | DOI | MR | Zbl
[10] Rabinowitz P. H., “Periodic solutions of Hamiltonian systems”, Comm. Pure Appl. Math., 31:2 (1978), 157–184 | DOI | MR
[11] Abbondandolo A., Majer P., “A non-squeezing theorem for convex symplectic images of the Hilbert ball”, Calc. Var. Partial Differential Equations, 54:2 (2015), 1469–1506 | DOI | MR | Zbl
[12] Haim-Kislev P., On the symplectic size of convex polytopes, 2017, arXiv: 1712.03494[math.SG]
[13] Gokhberg I. Ts., Krein M. G.,, Teoriya volterrovykh operatorov v gilbertovom prostranstve i eë prilozheniya, Nauka, M., 1967 | MR
[14] Rogers C. A., Shephard G. C., “The difference body of a convex body”, Arch. Math. (Basel), 8 (1957), 220–233 | DOI | MR | Zbl
[15] Stein E. M., Shakarchi R., Fourier analysis. An introduction, Princeton Lect. Anal., 1, Princeton Univ. Press, Princeton, NJ, 2003 | MR | Zbl
[16] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011 | MR
[17] Makarov B. M., Goluzina M. G., Lodkin A. A., Podkorytov A. N., Izbrannye zadachi po veschestvennomu analizu, Nevskii dialekt, BKhV-Peterburg, SPb., 2004 | MR