Symplectic capacity and the main triangle projection
Algebra i analiz, Tome 30 (2018) no. 3, pp. 66-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2018_30_3_a3,
     author = {E. D. Gluskin},
     title = {Symplectic capacity and the main triangle projection},
     journal = {Algebra i analiz},
     pages = {66--75},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a3/}
}
TY  - JOUR
AU  - E. D. Gluskin
TI  - Symplectic capacity and the main triangle projection
JO  - Algebra i analiz
PY  - 2018
SP  - 66
EP  - 75
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a3/
LA  - ru
ID  - AA_2018_30_3_a3
ER  - 
%0 Journal Article
%A E. D. Gluskin
%T Symplectic capacity and the main triangle projection
%J Algebra i analiz
%D 2018
%P 66-75
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a3/
%G ru
%F AA_2018_30_3_a3
E. D. Gluskin. Symplectic capacity and the main triangle projection. Algebra i analiz, Tome 30 (2018) no. 3, pp. 66-75. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a3/

[1] Hofer H., Zehnder E., Symplectic invariants and Hamiltonian dynamics, Birkhäuser Adv. Texts, Birkhäuser Verlag, Basel, 1994 | MR | Zbl

[2] Ostrover Y., “When symplectic topology meets Banach space geometry”, Proc. Intern. Congress Math. (Seoul, 2014), v. II, Kyung Moon Sa, Seoul, 2014, 959–981 | MR | Zbl

[3] Gromov M., “Pseudo holomorphic curves in symplectic manifolds”, Invent. Math., 82:2 (1985), 307–347 | DOI | MR | Zbl

[4] Ekeland I., Hofer H., “Symplectic topology and Hamiltonian dynamics”, Math. Z., 200:3 (1989), 355–378 | DOI | MR | Zbl

[5] Hofer H., Zehnder E., “A new capacity for symplectic manifolds”, Analysis, et cetera, Acad. Press, Boston, MA, 1990, 405–427 | DOI | MR

[6] Gluskin E. D., Ostrover Y., “Asymptotic equivalence of symplectic capacities”, Comment. Math. Helv., 91:1 (2016), 131–144 | DOI | MR | Zbl

[7] Kwapień S., Pełczyński A., “The main triangle projection in matrix spaces and its applications”, Studia Math., 34:1 (1970), 43–68 | DOI | MR | Zbl

[8] Litvak A. E., “Svoistva operatora diskretnogo integrirovaniya i nekotorye ego prilozheniya”, Vestn. S.-Peterburg. un-ta. Ser. mat., mekh., astronom., 1992, no. 4, 28–30 | Zbl

[9] Weinstein A., “Periodic orbits for convex Hamiltonian systems”, Ann. of Math. (2), 108:3 (1978), 507–518 | DOI | MR | Zbl

[10] Rabinowitz P. H., “Periodic solutions of Hamiltonian systems”, Comm. Pure Appl. Math., 31:2 (1978), 157–184 | DOI | MR

[11] Abbondandolo A., Majer P., “A non-squeezing theorem for convex symplectic images of the Hilbert ball”, Calc. Var. Partial Differential Equations, 54:2 (2015), 1469–1506 | DOI | MR | Zbl

[12] Haim-Kislev P., On the symplectic size of convex polytopes, 2017, arXiv: 1712.03494[math.SG]

[13] Gokhberg I. Ts., Krein M. G.,, Teoriya volterrovykh operatorov v gilbertovom prostranstve i eë prilozheniya, Nauka, M., 1967 | MR

[14] Rogers C. A., Shephard G. C., “The difference body of a convex body”, Arch. Math. (Basel), 8 (1957), 220–233 | DOI | MR | Zbl

[15] Stein E. M., Shakarchi R., Fourier analysis. An introduction, Princeton Lect. Anal., 1, Princeton Univ. Press, Princeton, NJ, 2003 | MR | Zbl

[16] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011 | MR

[17] Makarov B. M., Goluzina M. G., Lodkin A. A., Podkorytov A. N., Izbrannye zadachi po veschestvennomu analizu, Nevskii dialekt, BKhV-Peterburg, SPb., 2004 | MR