Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_3_a13, author = {D. R. Yafaev}, title = {A new representation of {Hankel} operators and its spectral consequences}, journal = {Algebra i analiz}, pages = {286--310}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a13/} }
D. R. Yafaev. A new representation of Hankel operators and its spectral consequences. Algebra i analiz, Tome 30 (2018) no. 3, pp. 286-310. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a13/
[1] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh integralnykh operatorov”, Izv. AN SSSR. Ser. mat., 34:5 (1970), 1142–1158 | MR | Zbl
[2] Birman M. Sh., Solomyak M. Z., “Spektralnaya asimptotika negladkikh ellipticheskikh operatorov. I”, Tr. Mosk. mat. o-va, 27, 1972, 3–52 ; “II”, Тр. Моск. мат. о-ва, 28, 1973, 3–34 | MR | Zbl | MR | Zbl
[3] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra psevdodifferentsialnykh operatorov s anizotropno-odnorodnymi simvolami. I”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1977, no. 3, 13–21 ; “II”, Вестн. Ленингр. ун-та. Сер. мат., мех., астроном., 1979, No 3, 5–10 | Zbl | Zbl
[4] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, LGU, L., 1980 | MR
[5] Erdelyi A., “General asymptotic expansions of Laplace integrals”, Arch. Rational Mech. Anal., 7:1 (1961), 1–20 | DOI | MR | Zbl
[6] Glover K., Lam J., Partington J. R., “Rational approximation of a class of infinite-dimensional systems. I. Singular values of Hankel operators”, Math. Control Signals Systems, 3:4 (1990), 325–344 | DOI | MR | Zbl
[7] Nikolski N. K., Operators, functions, and systems: an easy reading, v. I, Math. Surv. Monogr., 92, Hardy, Hankel, and Toeplitz, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[8] Peller V. V., Hankel operators and their applications, Springer Monogr. Math., Springer-Verlag, New York, 2003 | DOI | MR | Zbl
[9] Pushnitski A., Yafaev D., “Sharp estimates for singular values of Hankel operators”, Integral Equations Operator Theory, 83:3 (2015), 393-411 | DOI | MR | Zbl
[10] Pushnitski A., Yafaev D., “Asymptotic behavior of eigenvalues of Hankel operators”, Int. Math. Res. Not. IMRN, 2015:22 (2015), 11861–11886 | MR | Zbl
[11] Pushnitski A., Yafaev D., “Localization principle for compact Hankel operators”, J. Funct. Anal., 270:9 (2016), 3591–3621 | DOI | MR | Zbl
[12] Pushnitski A., Yafaev D., “Spectral asymptotics for compact selfadjoint Hankel operators”, J. Spectr. Theory, 6:4 (2016), 921–953 | DOI | MR | Zbl
[13] Pushnitski A., Yafaev D., “Best rational approximation of functions with logarithmic singularities”, Constr. Approx., 46:2 (2017), 243–269 | DOI | MR | Zbl
[14] Widom H., “Hankel matrices”, Trans. Amer. Math. Soc., 121 (1966), 1–35 | DOI | MR | Zbl
[15] Yafaev D. R., “Diagonalizations of two classes of unbounded Hankel operators”, Bull. Math. Sci., 4:2 (2014), 175–198 | DOI | MR | Zbl
[16] Yafaev D. R., “Criteria for Hankel operators to be sign-definite”, Anal. PDE, 8:1 (2015), 183–221 | DOI | MR | Zbl
[17] Yafaev D. R., “On finite rank Hankel operators”, J. Funct. Anal., 268:7 (2015), 1808–1839 | DOI | MR | Zbl
[18] Yafaev D. R., “Quasi-Carleman operators and their spectral properties”, Integral Equations Operator Theory, 81:4 (2015), 499–534 | DOI | MR | Zbl
[19] Yafaev D. R., “Quasi-diagonalization of Hankel operators”, J. Anal. Math., 29 (2017), 133–182 | DOI | MR
[20] Yafaev D. R., “Spectral and scattering theory for differential and Hankel operator”, Adv. Math., 308 (2017), 713–766 | DOI | MR | Zbl