Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_3_a12, author = {H. Schanz and U. Smilansky}, title = {Edge switching transformations of quantum graphs~-- a~scattering approach}, journal = {Algebra i analiz}, pages = {273--285}, publisher = {mathdoc}, volume = {30}, number = {3}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a12/} }
H. Schanz; U. Smilansky. Edge switching transformations of quantum graphs~-- a~scattering approach. Algebra i analiz, Tome 30 (2018) no. 3, pp. 273-285. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a12/
[1] Aizenman M., Schanz H., Smilansky U., Warzel S., “Edge switching transformations of quantum graphs”, Acta Phys. Polonica A, 132 (2017), 1699–1703 | DOI
[2] Kottos T., Smilansky U., “Quantum chaos on graphs”, Phys. Rev. Lett., 79 (1997), 4794–4797 | DOI
[3] Kottos T., Smilansky U., “Periodic orbit theory and spectral statistics for quantum graphs”, Ann. Physics, 274:1 (1999), 76–124 | DOI | MR | Zbl
[4] Schanz H., “A relation between the bond scattering matrix and the spectral counting function for quantum graphs”, Contemp. Math., 415, Amer. Math. Soc., Providence, RI, 2006, 269–282 | DOI | MR | Zbl
[5] Gnutzmann S., Smilansky U., “Quantum graphs: applications to quantum chaos and universal spectral statistics”, Adv. Phys., 55 (2006), 527–625 | DOI
[6] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl
[7] Gutkin B., Smilansky U., “Can one hear the shape of a graph?”, J. Phys. A, 31:31 (2001), 6061–6068 | DOI | MR | Zbl
[8] Band R., Levy G., “Quantum graphs which optimize the spectral gap”, Ann. Henri Poincare, 18:10 (2017), 3269–3323 ; arXiv: 1608.00520 | DOI | MR | Zbl
[9] Exner P., Jex M., “On the ground state of quantum graphs with attractive $\delta$-coupling”, Phys. Lett. A, 376:5 (2012), 713–717 | DOI | MR | Zbl
[10] Kurasov P., Naboko S., “Rayleigh estimates for differential operators on graphs”, J. Spectr. Theory, 4:2 (2014), 211–219 | DOI | MR | Zbl
[11] Kurasov P., Malenova G., Naboko S., “Spectral gap for quantum graphs and their edge connectivity”, J. Phys. A, 46:27 (2013), 275309 | DOI | MR | Zbl
[12] Albeverio S., Pankrashkin K., “A remark on Krein's resolvent formula and boundary conditions”, J. Phys. A, 38:22 (2005), 4859–4864 | DOI | MR | Zbl
[13] Simon B., “Spectral analysis of rank one perturbations and applications”, CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence, RI, 1995, 109–149 | DOI | MR | Zbl
[14] Berkolaiko G., Kennedy J., Kurasov P., Mugnolo D., “Edge connectivity and the spectral gap of combinatorial and quantum graphs”, J. Phys. A, 50:36 (2017), 365201 | DOI | MR | Zbl
[15] Kurasov P., “Surgery of graphs: M-function and spectral gap”, Acta Phys. Polonica A, 132 (2017), 1666–1671 | DOI
[16] Seidel J. J., “Graphs and two-graphs”, Proc. Fifth Southeastern Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1974), Congressus Numerantium, X, Utilitas Math., Winnipeg, MT, 1974, 125–143 | MR
[17] Godsil C. D., McKay B. D., “Constructing cospectral graphs”, Aequationes Math., 25:2–3 (1982), 257–268 | DOI | MR | Zbl
[18] Forrester P. J., Rains E. M., “Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices”, Int. Math. Res. Not. IMRN, 2006 (2006), Art. ID48306 | MR
[19] Smith F. T., “Lifetime matrix in collision theory”, Phys. Rev. (2), 118 (1960), 349–356 | DOI | MR | Zbl
[20] Hul O., Bauch S., Pakocski P., Savytskyy N., Zyczkowski K, Sirko L., “Experimental simulation of quantum graphs by microwave networks”, Phys. Rev. E, 69 (2004), 056205 | DOI
[21] Kottos T., Smilansky U., “Chaotic scattering on graphs”, Phys. Rev. Lett., 85 (2000), 968–971 | DOI
[22] Kottos T., Smilansky U., “Quantum graphs: a simple model for chaotic scattering”, J. Phys. A, 36:12 (2003), 3501–3524 | DOI | MR | Zbl
[23] Band R., Berkolaiko G., Smilansky U., “Dynamics of nodal points and the nodal count on a family of quantum graphs”, Ann. Henri Poincare, 13:1 (2012), 145–184 | DOI | MR | Zbl