Edge switching transformations of quantum graphs~-- a~scattering approach
Algebra i analiz, Tome 30 (2018) no. 3, pp. 273-285.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some elementary transformations of quantum graphs are discussed and their effects on the spectra of the Schrödinger operators are studied. In particular, the edge swapping operation is considered, where the lengths of two edges are interchanged, as well as switching, where the connectivity of the graph is modified by reconnecting two edges. Both transformations preserve the total length of the graphs. This problem was already studied at length and in generality in a previous paper. Here, it is addressed from a different viewpoint based on a scattering approach, yielding a trace formula for the difference between the spectral counting functions before and after the transformation.
Keywords: Schrödinger operator, quantum graph, length swapping, edge switching.
@article{AA_2018_30_3_a12,
     author = {H. Schanz and U. Smilansky},
     title = {Edge switching transformations of quantum graphs~-- a~scattering approach},
     journal = {Algebra i analiz},
     pages = {273--285},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a12/}
}
TY  - JOUR
AU  - H. Schanz
AU  - U. Smilansky
TI  - Edge switching transformations of quantum graphs~-- a~scattering approach
JO  - Algebra i analiz
PY  - 2018
SP  - 273
EP  - 285
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a12/
LA  - en
ID  - AA_2018_30_3_a12
ER  - 
%0 Journal Article
%A H. Schanz
%A U. Smilansky
%T Edge switching transformations of quantum graphs~-- a~scattering approach
%J Algebra i analiz
%D 2018
%P 273-285
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a12/
%G en
%F AA_2018_30_3_a12
H. Schanz; U. Smilansky. Edge switching transformations of quantum graphs~-- a~scattering approach. Algebra i analiz, Tome 30 (2018) no. 3, pp. 273-285. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a12/

[1] Aizenman M., Schanz H., Smilansky U., Warzel S., “Edge switching transformations of quantum graphs”, Acta Phys. Polonica A, 132 (2017), 1699–1703 | DOI

[2] Kottos T., Smilansky U., “Quantum chaos on graphs”, Phys. Rev. Lett., 79 (1997), 4794–4797 | DOI

[3] Kottos T., Smilansky U., “Periodic orbit theory and spectral statistics for quantum graphs”, Ann. Physics, 274:1 (1999), 76–124 | DOI | MR | Zbl

[4] Schanz H., “A relation between the bond scattering matrix and the spectral counting function for quantum graphs”, Contemp. Math., 415, Amer. Math. Soc., Providence, RI, 2006, 269–282 | DOI | MR | Zbl

[5] Gnutzmann S., Smilansky U., “Quantum graphs: applications to quantum chaos and universal spectral statistics”, Adv. Phys., 55 (2006), 527–625 | DOI

[6] Berkolaiko G., Kuchment P., Introduction to quantum graphs, Math. Surveys Monogr., 186, Amer. Math. Soc., Providence, RI, 2013 | MR | Zbl

[7] Gutkin B., Smilansky U., “Can one hear the shape of a graph?”, J. Phys. A, 31:31 (2001), 6061–6068 | DOI | MR | Zbl

[8] Band R., Levy G., “Quantum graphs which optimize the spectral gap”, Ann. Henri Poincare, 18:10 (2017), 3269–3323 ; arXiv: 1608.00520 | DOI | MR | Zbl

[9] Exner P., Jex M., “On the ground state of quantum graphs with attractive $\delta$-coupling”, Phys. Lett. A, 376:5 (2012), 713–717 | DOI | MR | Zbl

[10] Kurasov P., Naboko S., “Rayleigh estimates for differential operators on graphs”, J. Spectr. Theory, 4:2 (2014), 211–219 | DOI | MR | Zbl

[11] Kurasov P., Malenova G., Naboko S., “Spectral gap for quantum graphs and their edge connectivity”, J. Phys. A, 46:27 (2013), 275309 | DOI | MR | Zbl

[12] Albeverio S., Pankrashkin K., “A remark on Krein's resolvent formula and boundary conditions”, J. Phys. A, 38:22 (2005), 4859–4864 | DOI | MR | Zbl

[13] Simon B., “Spectral analysis of rank one perturbations and applications”, CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence, RI, 1995, 109–149 | DOI | MR | Zbl

[14] Berkolaiko G., Kennedy J., Kurasov P., Mugnolo D., “Edge connectivity and the spectral gap of combinatorial and quantum graphs”, J. Phys. A, 50:36 (2017), 365201 | DOI | MR | Zbl

[15] Kurasov P., “Surgery of graphs: M-function and spectral gap”, Acta Phys. Polonica A, 132 (2017), 1666–1671 | DOI

[16] Seidel J. J., “Graphs and two-graphs”, Proc. Fifth Southeastern Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1974), Congressus Numerantium, X, Utilitas Math., Winnipeg, MT, 1974, 125–143 | MR

[17] Godsil C. D., McKay B. D., “Constructing cospectral graphs”, Aequationes Math., 25:2–3 (1982), 257–268 | DOI | MR | Zbl

[18] Forrester P. J., Rains E. M., “Jacobians and rank 1 perturbations relating to unitary Hessenberg matrices”, Int. Math. Res. Not. IMRN, 2006 (2006), Art. ID48306 | MR

[19] Smith F. T., “Lifetime matrix in collision theory”, Phys. Rev. (2), 118 (1960), 349–356 | DOI | MR | Zbl

[20] Hul O., Bauch S., Pakocski P., Savytskyy N., Zyczkowski K, Sirko L., “Experimental simulation of quantum graphs by microwave networks”, Phys. Rev. E, 69 (2004), 056205 | DOI

[21] Kottos T., Smilansky U., “Chaotic scattering on graphs”, Phys. Rev. Lett., 85 (2000), 968–971 | DOI

[22] Kottos T., Smilansky U., “Quantum graphs: a simple model for chaotic scattering”, J. Phys. A, 36:12 (2003), 3501–3524 | DOI | MR | Zbl

[23] Band R., Berkolaiko G., Smilansky U., “Dynamics of nodal points and the nodal count on a family of quantum graphs”, Ann. Henri Poincare, 13:1 (2012), 145–184 | DOI | MR | Zbl