Bound on the number of negative eigenvalues of two-dimensional Schr\"odinger operators on domains
Algebra i analiz, Tome 30 (2018) no. 3, pp. 250-272.

Voir la notice de l'article provenant de la source Math-Net.Ru

A fundamental result of Solomyak says that the number of negative eigenvalues of a Schrödinger operator on a two-dimensional domain is bounded from above by a constant times a certain Orlicz norm of the potential. Here it is shown that in the case of Dirichlet boundary conditions the constant in this bound can be chosen independently of the domain.
Keywords: Schrödinger operator, Dirichlet Laplacian, Neumann Laplacian, Trudinger inequality.
@article{AA_2018_30_3_a11,
     author = {R. L. Frank and A. Laptev},
     title = {Bound on the number of negative eigenvalues of two-dimensional {Schr\"odinger} operators on domains},
     journal = {Algebra i analiz},
     pages = {250--272},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a11/}
}
TY  - JOUR
AU  - R. L. Frank
AU  - A. Laptev
TI  - Bound on the number of negative eigenvalues of two-dimensional Schr\"odinger operators on domains
JO  - Algebra i analiz
PY  - 2018
SP  - 250
EP  - 272
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a11/
LA  - en
ID  - AA_2018_30_3_a11
ER  - 
%0 Journal Article
%A R. L. Frank
%A A. Laptev
%T Bound on the number of negative eigenvalues of two-dimensional Schr\"odinger operators on domains
%J Algebra i analiz
%D 2018
%P 250-272
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a11/
%G en
%F AA_2018_30_3_a11
R. L. Frank; A. Laptev. Bound on the number of negative eigenvalues of two-dimensional Schr\"odinger operators on domains. Algebra i analiz, Tome 30 (2018) no. 3, pp. 250-272. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a11/

[1] Birman M. Sh., Laptev A., “The negative discrete spectrum of a two-dimensional Schrödinger operator”, Comm. Pure Appl. Math., 49:9 (1996), 967–997 | 3.0.CO;2-5 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] de Guzmán M., Differentiation of integrals in $\mathbb R^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975 | DOI | MR

[3] Grigor'yan A., Nadirashvili N., “Negative eigenvalues of two-dimensional Schrödinger operators”, Arch. Ration. Mech. Anal., 217:3 (2015), 975–1028 | DOI | MR | Zbl

[4] Khuri N. N., Martin A., Wu T. T., “Bound states in $n$ dimensions (especially $n=1$ and $n=2$)”, Few-Body Systems, 31 (2002), 83–89 | DOI

[5] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, GITTL, M., 1958 | MR

[6] Laptev A., Solomyak M., “On the negative spectrum of the two-dimensional Schrödinger operator with radial potential”, Comm. Math. Phys., 314:1 (2012), 229–241 | DOI | MR | Zbl

[7] Laptev A., Solomyak M., “On spectral estimates for two-dimensional Schrödinger operators”, J. Spectr. Theory, 3:4 (2013), 505–515 | DOI | MR | Zbl

[8] Molchanov S., Vainberg B., “Bargmann type estimates of the counting function for general Schrödinger operators”, Probl. mat. anal., 65, 2012, 77–118 | MR | Zbl

[9] Ogawa T., “A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations”, Nonlinear Anal., 14:9 (1990), 765–769 | DOI | MR | Zbl

[10] Pokhozhaev S. I., “O teoreme vlozheniya Soboleva v sluchae $pl = n$”, Dokl. nauch.-tekhn. konf. MEI, Sekts. mat., Izd-vo MEI, M., 1965, 158–170

[11] Rozenblyum G. V., “O sobstvennykh chislakh pervoi kraevoi zadachi v neogranichennykh oblastyakh”, Mat. sb., 89(131):2 (1972), 234–247 | MR | Zbl

[12] Rozenblyum G. V., “Raspredeleniya diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Dokl. AN SSSR, 202:5 (1972), 1012–1015 | Zbl

[13] Rozenblyum G. V., “Raspredeleniya diskretnogo spektra singulyarnykh differentsialnykh operatorov”, Izv. vuzov. Mat., 1976, no. 1, 75–86 | MR | Zbl

[14] Shargorodsky E., “On negative eigenvalues of two-dimensional Schrödinger operators”, Proc. Lond. Math. Soc. (3), 108:2 (2014), 441–483 | DOI | MR | Zbl

[15] Solomyak M., “Piecewise-polynomial approximation of functions from $H^l((0,1)^d)$, $2l=d$, and applications to the spectral theory of the Schrödinger operator”, Israel J. Math., 86:1–3 (1994), 253–275 | DOI | MR | Zbl

[16] Solomyak M., “Spectral problems related to the critical exponent in the Sobolev embedding theorem”, Proc. London Math. Soc. (3), 71:1 (1995), 53–75 | DOI | MR | Zbl

[17] Stoiciu M., “An estimate for the number of bound states of the Schrödinger operator in two dimensions”, Proc. Amer. Math. Soc., 132:4 (2004), 1143–1151 | DOI | MR | Zbl

[18] Trudinger N. S., “On imbeddings into Orlicz spaces and some applications”, J. Math. Mech., 17 (1967), 473–483 | MR | Zbl

[19] Weidl T., “Another look at Cwikel's inequality”, Differential Operators and Spectral Theory, Amer. Math. Soc. Transl. Ser. 2, 189, Adv. Math. Sci., 41, Amer. Math. Soc., Providence, RI, 1999, 247–254 | MR | Zbl

[20] Yudovich V. I., “O nekotorykh otsenkakh, svyazannykh s integralnymi operatorami i resheniyami ellipticheskikh uravnenii”, Dokl. AN SSSR, 138:4 (1961), 805–808 | MR | Zbl