Remarks on Liouville type theorems for steady-state Navier--Stokes equations
Algebra i analiz, Tome 30 (2018) no. 2, pp. 238-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

Liouville type theorems for the stationary Navier–Stokes equations are proved under certain assumptions. These assumptions are motivated by conditions that appear in Liouville type theorems for the heat equations with a given divergence free drift.
Keywords: Navier–Stokes equations, Liouville type theorem.
@article{AA_2018_30_2_a9,
     author = {G. Seregin},
     title = {Remarks on {Liouville} type theorems for steady-state {Navier--Stokes} equations},
     journal = {Algebra i analiz},
     pages = {238--248},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_2_a9/}
}
TY  - JOUR
AU  - G. Seregin
TI  - Remarks on Liouville type theorems for steady-state Navier--Stokes equations
JO  - Algebra i analiz
PY  - 2018
SP  - 238
EP  - 248
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_2_a9/
LA  - en
ID  - AA_2018_30_2_a9
ER  - 
%0 Journal Article
%A G. Seregin
%T Remarks on Liouville type theorems for steady-state Navier--Stokes equations
%J Algebra i analiz
%D 2018
%P 238-248
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_2_a9/
%G en
%F AA_2018_30_2_a9
G. Seregin. Remarks on Liouville type theorems for steady-state Navier--Stokes equations. Algebra i analiz, Tome 30 (2018) no. 2, pp. 238-248. http://geodesic.mathdoc.fr/item/AA_2018_30_2_a9/

[1] Bourguignon J. P., Brezis H., “Remarks on the Euler equation”, J. Funct. Anal., 15 (1974), 341–363 | DOI | MR

[2] Chae D., “Liouville-type theorem for the forced Euler equations and the Navier–Stokes equations”, Commun. Math. Phys., 326:1 (2014), 37–48 | DOI | MR

[3] Chae D., Yoneda T., “On the Liouville theorem for the stationary Navier–Stokes equations in a critical space”, J. Math. Anal. Appl., 405:2 (2013), 706–710 | DOI | MR

[4] Chae G., Wolf J., On Liouville type theorems for the steady Navier–Stokes equations in $\mathbb R^3$, arXiv: 1604.07643 | MR

[5] Galdi G. P., An introduction to the mathematical theory of the Navier–Stokes equations. Steady-state problems, Springer Monogr. Math., Second ed., Springer, New York, 2011 | DOI | MR

[6] Giaquinta M., Multiple integrals in the calculus of variations and nonlinear elliptic systems, Ann. of Math. Stud., 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR

[7] Gilbarg D., Weinberger H. F., “Asymptotic properties of steady plane solutions of the Navier–Stokes equations with bounded Dirichlet integral”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 5:2 (1978), 381–404 | MR

[8] Koch G., Nadirashvili N., Seregin G., Sverak V., “Liouville theorems for the Navier–Stokes equations and applications”, Acta Math., 203:1 (2009), 83–105 | DOI | MR

[9] Nazarov A. I., Uraltseva N. N., “Neravenstvo Garnaka i svyazannye s nim svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii s bezdivergentnymi mladshimi koeffitsientami”, Algebra i analiz, 23:1 (2011), 136–168 | MR | Zbl

[10] Seregin G., “Liouville type theorem for stationary Navier–Stokes equations”, Nonlinearity, 29:8 (2016), 2191–2195 | DOI | MR

[11] Seregin G., A Liouville type theorem for steady-state Navier–Stokes equations, arXiv: 1611.01563

[12] Seregin G., Silvestre L., Sverak V., Zlatos A., “On divergence-free drifts”, J. Differential Equations, 252:1 (2012), 505–540 | DOI | MR

[13] Stein E. M., Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, N.J., 1970 | MR