A uniqueness theorem and subharmonic test functions
Algebra i analiz, Tome 30 (2018) no. 2, pp. 318-334.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2018_30_2_a12,
     author = {B. N. Khabibullin and Z. F. Abdullina and A. P. Rozit},
     title = {A uniqueness theorem and subharmonic test functions},
     journal = {Algebra i analiz},
     pages = {318--334},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_2_a12/}
}
TY  - JOUR
AU  - B. N. Khabibullin
AU  - Z. F. Abdullina
AU  - A. P. Rozit
TI  - A uniqueness theorem and subharmonic test functions
JO  - Algebra i analiz
PY  - 2018
SP  - 318
EP  - 334
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_2_a12/
LA  - ru
ID  - AA_2018_30_2_a12
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%A Z. F. Abdullina
%A A. P. Rozit
%T A uniqueness theorem and subharmonic test functions
%J Algebra i analiz
%D 2018
%P 318-334
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_2_a12/
%G ru
%F AA_2018_30_2_a12
B. N. Khabibullin; Z. F. Abdullina; A. P. Rozit. A uniqueness theorem and subharmonic test functions. Algebra i analiz, Tome 30 (2018) no. 2, pp. 318-334. http://geodesic.mathdoc.fr/item/AA_2018_30_2_a12/

[1] Shabat B. V., Raspredelenie znachenii golomorfnykh otobrazhenii, Nauka, M., 1982 | MR

[2] Stoll W., Value distribution theory for meromorphic maps serial, Aspects Math., E7, Friedr. Vieweg Sohn, Braunschweig, 1985 | MR

[3] Griffits F., King Dzh., Teoriya Nevanlinny i golomorfnye otobrazheniya algebraicheskikh mnogoobrazii, Mir, M., 1986 | MR

[4] Dautov Sh. A., Khenkin G. M., “Nuli golomorfnykh funktsii konechnogo poryadka i vesovye otsenki reshenii $\bar\partial$-uravnenii”, Mat. sb., 107(149):2 (1978), 163–174 | MR | Zbl

[5] Bruna J., Massaneda X., “Zero sets of holomorphic functions in the unit ball with slow growth”, J. Anal. Math., 66 (1995), 217–252 | DOI | MR

[6] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. RAN. Ser. mat., 65:5 (2001), 167–190 | DOI | MR | Zbl

[7] Khenkin G. M., “Metod integralnykh predstavlenii v kompleksnom analize”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 7, VINITI, M., 1985, 23–124 | MR | Zbl

[8] Shvedenko S. V., “Klassy Khardi i svyazannye s nimi prostranstva analiticheskikh funktsii v edinichnom kruge, polukruge i share”, Itogi nauki i tekhn. Mat. anal., 23, VINITI, M., 1985, 3–124 | MR | Zbl

[9] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR

[10] Ronkin L. I., “Tselye funktsii”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 9, VINITI, M., 1986, 5–36 | MR

[11] Lelon P., Gruman L., Tselye funktsii mnogikh peremennykh, Mir, M., 1989 | MR

[12] Ronkin L. I., Functions of completely regular growth, Math. Appl. (Soviet Ser.), 81, Kluver Acad. Publ., Dordrecht, 1992 | MR

[13] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, RITs BashGU, Ufa, 2012

[14] Favorov S. Yu., Radchenko L. D., “Mera Rissa funktsii, subgarmonicheskikh vo vneshnosti kompakta”, Mat. Stud., 40:2 (2013), 149–158 | MR

[15] Radchenko L. D., Favorov S. Ju., “On subharmonic functions in a unit ball growing near a part of the boundary”, Zb. prats Inst. mat. NAN Ukraïni, 10:4–5 (2013), 338–356 http://www.twirpx.com/file/1724787

[16] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[17] Khabibullin B. N., Tamindarova N. R., “Distribution of zeros for Holomorphic functions: Hadamard- and Blaschke-type conditions”, Internat. Workshop on “Non-harmonic Analysis and Differential Operators” (May 25–27, 2016, Baku), Abstracts, NAS Azerbaijan, Baku

[18] Khabibullin B. N., Tamindarova N. R., “Uniqueness theorems for subharmonic and holomorphic functions of several variables on a domain”, Azerbaijan J. Math., 7:1 (2017), 70–79 http://azjm.org/index.php/azjm/article/view/640/319 | MR

[19] Khabibullin B. N., Tamindarova N. R., “Subharmonic test functions and the distribution of zero sets of holomorphic functions”, Lobachevskii J. Math., 38:1 (2017), 38–43 ; arXiv: 1606.06714v1 | DOI | MR

[20] Klimek M., Pluripotential theory, London Math. Soc. Monogr., 6, Clarendon Press, New York, 1991 | MR

[21] Riihentaus Yu., “Convex functions and subharmonic functions”, Potential Anal., 5:3 (1996), 301–309 | MR

[22] Doob J. L., Classical potential theory and its probabilistic counterpart, Grundlehren Math. Wiss., 262, Springer-Verlag, New York, 1984 | DOI | MR

[23] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR

[24] Ransford Th., Potential theory in the complex plane, London Math. Soc. Student Text, 28, Cambridge Univ. Press, Cambridge, 1995 | MR

[25] Kondratyuk A. A., “O metode sfericheskikh garmonik dlya subgarmonicheskikh funktsii”, Mat. sb., 116(158):2 (1981), 147–165 | MR | Zbl

[26] Kondratyuk A. A., “Sfericheskie garmoniki i subgarmonicheskie funktsii”, Mat. sb., 125(167):2 (1984), 147–166 | MR | Zbl

[27] Khabibullin B. N., “Teorema edinstvennosti dlya subgarmonicheskikh funktsii konechnogo poryadka”, Mat. sb., 182:6 (1991), 811–827 | MR | Zbl

[28] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[29] Levin B. Ya., Lectures on entire functions, Transl. Math. Monogr., 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR

[30] Grishin A. F., Malyutin K. G., Trigonometricheski vypuklye funktsii, Yugo-Zap. gos. un-t, Kursk, 2015

[31] Khabibullin B. N., Tamindarova N. R., Raspredelenie nulei i mass golomorfnykh i subgarmonicheskikh funktsii. I. Usloviya tipa Adamara i Blyashke, arXiv: 1512.04610v2[math.CV]

[32] Poletsky E. A., “Holomorphic currents”, Indiana Univ. Math. J., 42:1 (1993), 85–144 | DOI | MR

[33] Poletsky E. A., “Disk envelopes of functions. II”, J. Funct. Anal., 163 (1999), 111–132 | DOI | MR