Nonexistence of torically maximal hypersurfaces
Algebra i analiz, Tome 30 (2018) no. 1, pp. 20-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Torically maximal curves (known also as simple Harnack curves) are real algebraic curves in the projective plane such that their logarithmic Gauss map is totally real. In this paper it is shown that the hyperplanes in projective spaces are the only torically maximal hypersurfaces of higher dimensions.
Keywords: simple harnack curves, real algebraic toric hypersurfaces.
@article{AA_2018_30_1_a1,
     author = {E. Brugall\'e and G. Mikhalkin and J.-J. Risler and K. Shaw},
     title = {Nonexistence of torically maximal hypersurfaces},
     journal = {Algebra i analiz},
     pages = {20--31},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_1_a1/}
}
TY  - JOUR
AU  - E. Brugallé
AU  - G. Mikhalkin
AU  - J.-J. Risler
AU  - K. Shaw
TI  - Nonexistence of torically maximal hypersurfaces
JO  - Algebra i analiz
PY  - 2018
SP  - 20
EP  - 31
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_1_a1/
LA  - en
ID  - AA_2018_30_1_a1
ER  - 
%0 Journal Article
%A E. Brugallé
%A G. Mikhalkin
%A J.-J. Risler
%A K. Shaw
%T Nonexistence of torically maximal hypersurfaces
%J Algebra i analiz
%D 2018
%P 20-31
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_1_a1/
%G en
%F AA_2018_30_1_a1
E. Brugallé; G. Mikhalkin; J.-J. Risler; K. Shaw. Nonexistence of torically maximal hypersurfaces. Algebra i analiz, Tome 30 (2018) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/AA_2018_30_1_a1/

[1] Extreme forms of real algebraic varieties, ARCC. workshop (Amer. Inst. Math., Palo Alto, CA, April 6–9, 2006)

[2] Benedetti R., Risler J. J., Real algebraic and semi-algebraic sets, Actualités Mathématiques [Current Mathematical Topics], Hermann, Paris, 1990 | MR

[3] Brugallé E., “Pseudoholomorphic simple Harnack curves”, Enseign. Math., 61:3–4 (2015), 483–498 | DOI | MR

[4] Kapranov M. M., “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:2 (1991), 277–285 | DOI | MR

[5] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. anal. i ego pril., 12:1 (1978), 51–61 | MR | Zbl

[6] Kummer M., Shamovich E., Real fibered morphisms and ulrich sheaves, 2015, arXiv: 1507.06760

[7] Lang L., A generalization of simple Harnack curves, 2015, arXiv: 1504.07256

[8] Mikhalkin G., “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR

[9] Mikhalkin G., Amoebas of algebraic varieties, 2001, arXiv: math/0108225

[10] Passare M., Risler J-J., “On the curvature of the real amoeba”, Proc. of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 2011, 129–134 | MR