Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_1_a1, author = {E. Brugall\'e and G. Mikhalkin and J.-J. Risler and K. Shaw}, title = {Nonexistence of torically maximal hypersurfaces}, journal = {Algebra i analiz}, pages = {20--31}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_1_a1/} }
E. Brugallé; G. Mikhalkin; J.-J. Risler; K. Shaw. Nonexistence of torically maximal hypersurfaces. Algebra i analiz, Tome 30 (2018) no. 1, pp. 20-31. http://geodesic.mathdoc.fr/item/AA_2018_30_1_a1/
[1] Extreme forms of real algebraic varieties, ARCC. workshop (Amer. Inst. Math., Palo Alto, CA, April 6–9, 2006)
[2] Benedetti R., Risler J. J., Real algebraic and semi-algebraic sets, Actualités Mathématiques [Current Mathematical Topics], Hermann, Paris, 1990 | MR
[3] Brugallé E., “Pseudoholomorphic simple Harnack curves”, Enseign. Math., 61:3–4 (2015), 483–498 | DOI | MR
[4] Kapranov M. M., “A characterization of $A$-discriminantal hypersurfaces in terms of the logarithmic Gauss map”, Math. Ann., 290:2 (1991), 277–285 | DOI | MR
[5] Khovanskii A. G., “Mnogogranniki Nyutona i rod polnykh peresechenii”, Funkts. anal. i ego pril., 12:1 (1978), 51–61 | MR | Zbl
[6] Kummer M., Shamovich E., Real fibered morphisms and ulrich sheaves, 2015, arXiv: 1507.06760
[7] Lang L., A generalization of simple Harnack curves, 2015, arXiv: 1504.07256
[8] Mikhalkin G., “Real algebraic curves, the moment map and amoebas”, Ann. of Math. (2), 151:1 (2000), 309–326 | DOI | MR
[9] Mikhalkin G., Amoebas of algebraic varieties, 2001, arXiv: math/0108225
[10] Passare M., Risler J-J., “On the curvature of the real amoeba”, Proc. of the Gökova Geometry-Topology Conference 2010, Int. Press, Somerville, MA, 2011, 129–134 | MR