A~moving lemma for motivic spaces
Algebra i analiz, Tome 29 (2017) no. 6, pp. 178-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

The following moving lemma is proved. Let $k$ be a field and $X$ be a quasi-projective variety. Let $Z$ be a closed subset in $X$ and let $U$ be the semi-local scheme of finitely many closed points on $X$. Then the natural morphism $U\to X/(X-Z)$ of Nisnevich sheaves is $\mathbf A^1$-homotopic to the constant morphism of $U\to X/(X-Z)$ sending $U$ to the distinguished point of $X/(X-Z)$.
Keywords: moving lemma, motivic spaces, Gersten conjecture.
@article{AA_2017_29_6_a4,
     author = {I. A. Panin},
     title = {A~moving lemma for motivic spaces},
     journal = {Algebra i analiz},
     pages = {178--181},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a4/}
}
TY  - JOUR
AU  - I. A. Panin
TI  - A~moving lemma for motivic spaces
JO  - Algebra i analiz
PY  - 2017
SP  - 178
EP  - 181
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_6_a4/
LA  - en
ID  - AA_2017_29_6_a4
ER  - 
%0 Journal Article
%A I. A. Panin
%T A~moving lemma for motivic spaces
%J Algebra i analiz
%D 2017
%P 178-181
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_6_a4/
%G en
%F AA_2017_29_6_a4
I. A. Panin. A~moving lemma for motivic spaces. Algebra i analiz, Tome 29 (2017) no. 6, pp. 178-181. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a4/

[1] Colliot-Thélène J.-L., Ojanguren M., “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75:2 (1992), 97–122 | DOI | MR | Zbl

[2] Morel F., A1-algebraic topology over a field, Lecture Notes in Math., 2052, Springer-Verlag, Heidelberg, 2012 | DOI | MR

[3] Morel F., Voevodsky V., “$\mathbb A^1$-homotopy theory of schemes”, Inst. Hautes Etudes Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl

[4] Panin I., Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, , 2015 http://www.math.uni-bielefeld.de/LAG/man/559.html

[5] Panin I., Stavrova A., Vavilov N., “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl