Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_6_a4,
author = {I. A. Panin},
title = {A~moving lemma for motivic spaces},
journal = {Algebra i analiz},
pages = {178--181},
publisher = {mathdoc},
volume = {29},
number = {6},
year = {2017},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a4/}
}
I. A. Panin. A~moving lemma for motivic spaces. Algebra i analiz, Tome 29 (2017) no. 6, pp. 178-181. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a4/
[1] Colliot-Thélène J.-L., Ojanguren M., “Espaces principaux homogènes localement triviaux”, Inst. Hautes Études Sci. Publ. Math., 75:2 (1992), 97–122 | DOI | MR | Zbl | DOI | MR | Zbl
[2] Morel F., A1-algebraic topology over a field, Lecture Notes in Math., 2052, Springer-Verlag, Heidelberg, 2012 | DOI | MR | DOI | MR
[3] Morel F., Voevodsky V., “$\mathbb A^1$-homotopy theory of schemes”, Inst. Hautes Etudes Sci. Publ. Math., 90 (1999), 45–143 | DOI | MR | Zbl | DOI | MR | Zbl
[4] Panin I., Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, , 2015 http://www.math.uni-bielefeld.de/LAG/man/559.html
[5] Panin I., Stavrova A., Vavilov N., “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes. I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl | DOI | MR | Zbl