Binomials whose dilations generate~$H^2(\mathbb D)$
Algebra i analiz, Tome 29 (2017) no. 6, pp. 159-177.

Voir la notice de l'article provenant de la source Math-Net.Ru

This note is about the completeness of the function families $$ \{z^n(\lambda-z^n)^N\colon n=1,2,\dots\} $$ in the Hardy space $H^2_0(\mathbb D)$, and some related questions. It is shown that for $|\lambda|>R(N)$ the family is complete in $H^2_0(\mathbb D)$ (and often is a Riesz basis of $H^2_0$), whereas for $|\lambda|$ it is not, where both radii $r(N)\leq R(N)$ tends to infinity and behave more or less as $N$ (as $N\to\infty$). Several results are also obtained for more general binomials $\{z^n(1-\frac1\lambda z^n)^\nu\colon n=1,2,\dots\}$ where $|\lambda|\geq1$ and $\nu\in\mathbb C$.
Keywords: Hardy spaces, completeness of dilations, Riesz basis, Hilbert multidisc, Bohr transform, binomial functions.
@article{AA_2017_29_6_a3,
     author = {N. K. Nikolski},
     title = {Binomials whose dilations generate~$H^2(\mathbb D)$},
     journal = {Algebra i analiz},
     pages = {159--177},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a3/}
}
TY  - JOUR
AU  - N. K. Nikolski
TI  - Binomials whose dilations generate~$H^2(\mathbb D)$
JO  - Algebra i analiz
PY  - 2017
SP  - 159
EP  - 177
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_6_a3/
LA  - en
ID  - AA_2017_29_6_a3
ER  - 
%0 Journal Article
%A N. K. Nikolski
%T Binomials whose dilations generate~$H^2(\mathbb D)$
%J Algebra i analiz
%D 2017
%P 159-177
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_6_a3/
%G en
%F AA_2017_29_6_a3
N. K. Nikolski. Binomials whose dilations generate~$H^2(\mathbb D)$. Algebra i analiz, Tome 29 (2017) no. 6, pp. 159-177. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a3/

[1] Apostol T. M., “Functions of number theory”, NIST handbook of mathematical functions, Cambridge Univ. Press, Cambridge, 2010, 637–649 ; see also web page http://dlmf.nist.gov/27 | MR

[2] Báez-Duarte L., “A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis”, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:1 (2003), 5–11 | MR | Zbl

[3] Baker R. C., Harman G., Pintz J., “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl

[4] Beurling A., “On the completeness of $\{\psi(nt)\}$ on $L^2(0,1)$ (a seminar talk)”, The collected works of Arne Beurling, v. 2, Contemp. Math., Harmonic Analysis, Birkhaüser, Boston, 1989, 378–380 | MR

[5] Bohr H., “Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien $\sum\frac{a_n}{n^s}$”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl. A, 9 (1913), 441–488

[6] Gosselin R., Neuwirth J., “On Paley-Wiener bases”, J. Math. Mech., 18 (1968/1968), 871–879 | MR

[7] Hedenmalm H., Lindquist P., Seip K., “A Hilbert space of Dirichlet series and sytems of dilated functions in $L^2(0,1)$”, Duke Math. J., 86:1 (1997), 1–37 | DOI | MR | Zbl

[8] Hedenmalm H., Lindquist P., Seip K., “Addendum to `A Hilbert space of Dirichlet series and sytems of dilated functions in $L^2(0,1)$' ”, Duke Math. J., 99:1 (1999), 175–178 | DOI | MR | Zbl

[9] Hilbert D., “Wesen und Ziele einer Analysis der unendlich vielen unabhängigen Variablen”, Rend. Cir. Mat. Palermo, 27 (1909), 59–74 | DOI | Zbl

[10] Mityagin B., Systems of dilated functions: completeness, minimality, basisness, 20 Dec. 2016, arXiv: 1612.06791

[11] Neuwirth J., Ginsberg J., Newman D., “Approximation by $f(kx)$”, J. Funct. Anal., 5 (1970), 194–203 | DOI | MR | Zbl

[12] Nikolski N., Eléments d'analyse avancé, v. 1, Espaces de Hardy, Berlin–Paris, 2012

[13] Nikolski N., “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc”, Ann. Inst. Fourier (Grenoble), 62:5 (2012), 1601–1626 | DOI | MR | Zbl

[14] Nikolski N., Addendum and corrigendum to “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc” [Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1601–1626" (to appear)

[15] Nyman B., On the one-dimensional translation group and semi-group in certain function spaces, Thesis, Uppsala Univ., 1950 | MR | Zbl

[16] Wintner A., “Diophantine approximation and Hilbert's space”, Amer. J. Math., 66 (1944), 564–578 | DOI | MR | Zbl