Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_6_a3, author = {N. K. Nikolski}, title = {Binomials whose dilations generate~$H^2(\mathbb D)$}, journal = {Algebra i analiz}, pages = {159--177}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a3/} }
N. K. Nikolski. Binomials whose dilations generate~$H^2(\mathbb D)$. Algebra i analiz, Tome 29 (2017) no. 6, pp. 159-177. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a3/
[1] Apostol T. M., “Functions of number theory”, NIST handbook of mathematical functions, Cambridge Univ. Press, Cambridge, 2010, 637–649 ; see also web page http://dlmf.nist.gov/27 | MR
[2] Báez-Duarte L., “A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis”, Atti Accad. Naz. Lincei Cl. Sci. Fiz. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:1 (2003), 5–11 | MR | Zbl
[3] Baker R. C., Harman G., Pintz J., “The difference between consecutive primes. II”, Proc. London Math. Soc. (3), 83:3 (2001), 532–562 | DOI | MR | Zbl
[4] Beurling A., “On the completeness of $\{\psi(nt)\}$ on $L^2(0,1)$ (a seminar talk)”, The collected works of Arne Beurling, v. 2, Contemp. Math., Harmonic Analysis, Birkhaüser, Boston, 1989, 378–380 | MR
[5] Bohr H., “Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien $\sum\frac{a_n}{n^s}$”, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl. A, 9 (1913), 441–488
[6] Gosselin R., Neuwirth J., “On Paley-Wiener bases”, J. Math. Mech., 18 (1968/1968), 871–879 | MR
[7] Hedenmalm H., Lindquist P., Seip K., “A Hilbert space of Dirichlet series and sytems of dilated functions in $L^2(0,1)$”, Duke Math. J., 86:1 (1997), 1–37 | DOI | MR | Zbl
[8] Hedenmalm H., Lindquist P., Seip K., “Addendum to `A Hilbert space of Dirichlet series and sytems of dilated functions in $L^2(0,1)$' ”, Duke Math. J., 99:1 (1999), 175–178 | DOI | MR | Zbl
[9] Hilbert D., “Wesen und Ziele einer Analysis der unendlich vielen unabhängigen Variablen”, Rend. Cir. Mat. Palermo, 27 (1909), 59–74 | DOI | Zbl
[10] Mityagin B., Systems of dilated functions: completeness, minimality, basisness, 20 Dec. 2016, arXiv: 1612.06791
[11] Neuwirth J., Ginsberg J., Newman D., “Approximation by $f(kx)$”, J. Funct. Anal., 5 (1970), 194–203 | DOI | MR | Zbl
[12] Nikolski N., Eléments d'analyse avancé, v. 1, Espaces de Hardy, Berlin–Paris, 2012
[13] Nikolski N., “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc”, Ann. Inst. Fourier (Grenoble), 62:5 (2012), 1601–1626 | DOI | MR | Zbl
[14] Nikolski N., Addendum and corrigendum to “In a shadow of the RH: cyclic vectors of Hardy spaces on the Hilbert multidisc” [Ann. Inst. Fourier (Grenoble) 62 (2012), no. 5, 1601–1626" (to appear)
[15] Nyman B., On the one-dimensional translation group and semi-group in certain function spaces, Thesis, Uppsala Univ., 1950 | MR | Zbl
[16] Wintner A., “Diophantine approximation and Hilbert's space”, Amer. J. Math., 66 (1944), 564–578 | DOI | MR | Zbl