Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_5_a2, author = {A. Ya. Kanel-Belov and V. A. Voronov and D. D. Cherkashin}, title = {On the chromatic number of infinitesimal plane layer}, journal = {Algebra i analiz}, pages = {68--89}, publisher = {mathdoc}, volume = {29}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_5_a2/} }
A. Ya. Kanel-Belov; V. A. Voronov; D. D. Cherkashin. On the chromatic number of infinitesimal plane layer. Algebra i analiz, Tome 29 (2017) no. 5, pp. 68-89. http://geodesic.mathdoc.fr/item/AA_2017_29_5_a2/
[1] Pasynkov B. A., Aleksandrov P. S., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR
[2] Ponomarenko E. I., Raigorodskii A. M., “Novaya nizhnyaya otsenka khromaticheskogo chisla ratsionalnogo prostranstva”, Uspekhi mat. nauk, 68:5 (2013), 183–184 | DOI | MR | Zbl
[3] Ponomarenko E. I., Raigorodskii A. M., “Novaya nizhnyaya otsenka khromaticheskogo chisla ratsionalnogo prostranstva s odnim i dvumya zapreschennymi rasstoyaniyami”, Mat. zametki, 97:2 (2015), 255–261 | DOI | MR | Zbl
[4] Raiskii D. E., “Realizatsiya vsekh rasstoyanii pri razbienii prostranstva $\mathbb R^n$ na $n+1$ chast”, Mat. zametki, 7:3 (1970), 319–323 | MR | Zbl
[5] Raigorodskii A. M., “O khromaticheskom chisle prostranstva”, Uspekhi mat. nauk, 55:2 (2000), 147–148 | DOI | MR | Zbl
[6] Raigorodskii A. M., “Problema Borsuka i khromaticheskie chisla nekotorykh metricheskikh prostranstv”, Uspekhi mat. nauk, 56:1 (2001), 107–146 | DOI | MR | Zbl
[7] Raigorodskii A. M., Khromaticheskie chisla, MTsNMO, M., 2003
[8] Raigorodskii A. M., Lineino-algebraicheskii metod v kombinatorike, MTsNMO, M., 2007
[9] Kupavskii A. B., “O raskraskakh sfer, vlozhennykh v $\mathbb R^n$”, Mat. sb., 202:6 (2011), 83–110 | DOI | MR | Zbl
[10] Axenovich M., Choi J., Lastrina M., McKay T., Smith J., Stanton B., “On the chromatic number of subsets of the Euclidean plane”, Graphs Combin., 30:1 (2014), 71–81 | DOI | MR | Zbl
[11] Bauslaugh B. L., “Tearing a strip off the plane”, J. Graph Theory, 29:1 (1998), 17–33 | 3.0.CO;2-H class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] Benda M., Perles M., “Colorings of metric spaces”, Geombinatorics, 9:3 (2000), 113–126 | MR | Zbl
[13] Brass P., Moser W. O. J., Pach J., Research problems in discrete geometry, Springer, New York, 2005 | MR | Zbl
[14] De Bruijn N. G., Erdős P., “A colour problem for infinite graphs and a problem in the theory of relations”, Indigationes Math., 13 (1951), 371–373 | DOI | MR | Zbl
[15] Chilakamarri K. B., “The unit-distance graph problem: a brief survey and some new results”, Bull. Inst. Combin. Appl., 8 (1993), 39–60 | MR | Zbl
[16] Coulson D., “A $15$-colouring of $3$-space omitting distance one”, Discrete Math., 256:1–2 (2002), 83–90 | DOI | MR | Zbl
[17] Currie J. D., Eggleton R. B., Chromatic properties of the Euclidean plane, 2015, arXiv: 1509.03667
[18] Exoo G., “$\varepsilon$-Unit Distance Graphs”, Discrete Comput. Geom., 33:1 (2005), 117–123 | DOI | MR | Zbl
[19] Falconer K. J., “The realization of distances in measurable subsets covering $\mathbb R^n$”, J. Combin. Theory Ser. A, 31:2 (1981), 184–189 | DOI | MR | Zbl
[20] Grytczuk J., Junosza-Szaniawski K., Sokół J., Wȩsek K., “Fractional and $j$-fold coloring of the plane”, Discrete Comput. Geom., 55:3 (2016), 594–609 | DOI | MR | Zbl
[21] Hadwiger H., Debrunner H., Kombinatorische Geometrie in der Ebene, Monographica de “L'Enseignement Mathematique”, 2, Inst. Math., Univ. Geneve, 1960 | MR | Zbl
[22] Johnson P. D., “Coloring abelian groups”, Discrete Math., 40:2 (1982), 219–233 | DOI | MR
[23] Kahn J., Kalai G., “A counterexample to Borsuk's conjecture”, Bull. Amer. Math. Soc., 29:1 (1993), 60–62 | DOI | MR | Zbl
[24] Klee V., Wagon S., Old and new unsolved problems in plane geometry and number theory, Dolciani Math. Expos., 11, Math. Assoc. Amer., Washington, DC, 1991 | MR | Zbl
[25] Kupavskii A. B., Raigorodskii A. M., “On the chromatic numbers of small-dimensional Euclidean spaces”, Electron. Notes Discrete Math., 34, Elsevier Sci., Amsterdam, 2009, 435–439 | DOI | MR | Zbl
[26] Larman D. G., Rogers A. C., “The realization of distances within sets in Euclidean space”, Mathematika, 19:1 (1972), 1–24 | DOI | MR | Zbl
[27] Nechushtan O., “On the space chromatic number”, Discrete Math., 256:1 (2002), 499–507 | DOI | MR | Zbl
[28] Pach J., Agarwal P. K., Combinatorial geometry, John Wiley Sons, New York, 1995 | MR | Zbl
[29] Raigorodskii A. M., “Coloring distance graphs and graphs of diameters”, Thirty essays on geometric graph theory, Springer, New York, 2013, 429–460 | DOI | MR | Zbl
[30] Raigorodskii A. M., “Cliques and cycles in distance graphs and graphs of diameters”, Discrete geometry and algebraic combinatorics, Contemp. Math., 625, Amer. Math. Soc., Providence, RI, 2014, 93–109 | DOI | MR | Zbl
[31] Shelah S., Soifer A., “Axiom of choice and chromatic number of the plane”, J. Combin. Theory Ser. A, 103:2 (2003), 387–391 | DOI | MR | Zbl
[32] Soifer A., “Relatives of chromatic number of the plane. I”, Geombinatorics, 1:4 (1992), 13–15 | MR
[33] Soifer A., The mathematical coloring book: mathematics of coloring and the colorful life of its creators, Springer, New York, 2009 | MR | Zbl
[34] Soifer A., “The Hadwiger–Nelson Problem”, Open problems in mathematics, Springer, Cham, 2016, 439–457 | DOI | MR | Zbl
[35] Székely L. A., “Erdős on unit distances and the Szemerédi–Trotter theorems”, Paul Erdős and his mathematics (Budapest, 1999), v. II, Bolyai Math. Stud., 11, János Bolyai Math. Soc., Budapest, 2002, 649–666 | MR
[36] Woodall D. R., “Distances realized by sets covering the plane”, J. Combin. Theory Ser. A, 14:2 (1973), 187–200 | DOI | MR | Zbl