Signal recovery via TV-type energies
Algebra i analiz, Tome 29 (2017) no. 4, pp. 159-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

One-dimensional variants are considered of the classical first order total variation denoising model introduced by Rudin, Osher, and Fatemi. This study is based on previous work of the authors on various denoising and inpainting problems in image analysis, where variational methods in arbitrary dimensions were applied. More than being just a special case, the one-dimensional setting makes it possible to study regularity properties of minimizers by more subtle methods that do not have correspondences in higher dimensions. In particular, quite strong regularity results are obtained for a class of data functions that contains many of the standard examples from signal processing such as rectangle or triangle signals as a special case. The analysis of the related Euler–Lagrange equation, which turns out to be a second order two-point boundary value problem with Neumann conditions, by ODE methods completes the picture of this investigation.
Keywords: total variation, signal denoising, variational problems in one independent variable, linear growth, existence and regularity of solutions.
@article{AA_2017_29_4_a5,
     author = {M. Fuchs and J. M\"uller and C. Tietz},
     title = {Signal recovery via {TV-type} energies},
     journal = {Algebra i analiz},
     pages = {159--195},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_4_a5/}
}
TY  - JOUR
AU  - M. Fuchs
AU  - J. Müller
AU  - C. Tietz
TI  - Signal recovery via TV-type energies
JO  - Algebra i analiz
PY  - 2017
SP  - 159
EP  - 195
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_4_a5/
LA  - en
ID  - AA_2017_29_4_a5
ER  - 
%0 Journal Article
%A M. Fuchs
%A J. Müller
%A C. Tietz
%T Signal recovery via TV-type energies
%J Algebra i analiz
%D 2017
%P 159-195
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_4_a5/
%G en
%F AA_2017_29_4_a5
M. Fuchs; J. Müller; C. Tietz. Signal recovery via TV-type energies. Algebra i analiz, Tome 29 (2017) no. 4, pp. 159-195. http://geodesic.mathdoc.fr/item/AA_2017_29_4_a5/

[1] Rudin L. I., Osher S., Fatemi E., “Nonlinear total variation based noise removal algorithms”, Phys. D, 60:1–4 (1992), 259–268 | DOI | MR | Zbl

[2] Little M. A., Jones N. S., “Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory”, Proc. Math. Phys. Eng. Sci., 467:2135 (2011), 3088–3114 | DOI | Zbl

[3] Selesnick I., Parekh A., Bayram I., “Convex 1-D total variation denoising with non-convex regularization”, IEEE Signal Process. Lett., 22:2 (2015), 141–144 | DOI | MR

[4] Torres A., Marquina A., Font J. A., Ibáñez J. M., “Total-variation-based methods for gravitational wave denoising”, Phys. Rev. D, 90:8 (2014), 084029 | DOI

[5] Bildhauer M., Fuchs M., “A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim., 66:3 (2012), 331–361 | DOI | MR | Zbl

[6] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Pt. I: regularity theory”, Probl. mat. anal., 76, 2014, 39–52 | MR | Zbl

[7] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Pt. II: relaxation and dual variational formulation”, Probl. mat. anal., 77, 2015, 3–18 | MR | Zbl

[8] Bildhauer M., Fuchs M., “Image inpainting with energies of linear growth. A collection of proposals”, Probl. mat. anal., 74, 2014, 45–50 | MR | Zbl

[9] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Pt. III: Minimization among sets with finite perimeter”, Probl. mat. anal., 78, 2015, 27–30 | MR | Zbl

[10] Bildhauer M., Fuchs M., Tietz C., “$C^{1,\alpha}$-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting”, Algebra i analiz, 27:3 (2015), 51–65 | MR

[11] Fuchs M., Tietz C., “Existence of generalized minimizers and of dual solutions for a class of variational problems with linear growth related to image recovery”, Probl. mat. anal., 81, 2015, 107–120 | MR | Zbl

[12] Bredies K., Kunisch K., Valkonen T., “Properties of L1-TGV2: The one-dimensional case”, J. Math. Anal. Appl., 398:1 (2013), 438–454 | DOI | MR | Zbl

[13] Strong D. M., Chan T., “Edge-preserving and scale-dependent properties of total variation regularization”, Inverse Problems, 19:6 (2003), 165–187 | DOI | MR

[14] Papafitsoros K., Bredies K., “A study of the one dimensional total generalised variation regularisation problem”, Inverse Probl. Imaging, 9:2 (2015), 511–550 | DOI | MR | Zbl

[15] Buttazzo G., Giaquinta M., Hildebrandt S., One-dimensional variational problems. An introduction, Oxford Lecture Ser. Math. Appl., 15, Clarendon Press, New York, 1998 | MR | Zbl

[16] Adams R. A., Sobolev spaces, Pure Appl. Math., 65, Acad. Press, New-York–London, 1975 | MR | Zbl

[17] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser, Basel, 1984 | MR | Zbl

[18] Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 | MR | Zbl

[19] Thompson H. B., “Second order ordinary differential equations with fully nonlinear two-point boundary conditions. I”, Pacific J. Math., 172:1 (1996), 255–277 | DOI | MR | Zbl

[20] Thompson H. B., “Second order ordinary differential equations with fully nonlinear two-point boundary conditions. II”, Pacific J. Math., 172:1 (1996), 279–297 | DOI | MR | Zbl

[21] De Coster C., Habets P., Two-point boundary value problems: lower and upper solutions, Math. Sci. Eng., 205, Elsivier, Amsterdam, 2006 | MR | Zbl

[22] Bildhauer M., Fuchs M., “A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation”, Zap. nauch. semin. POMI, 385, 2010, 5–17 | MR

[23] Hewitt E., Stromberg K., Real and abstract analysis, A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965 | MR | Zbl

[24] Anzellotti G., Giaquinta M., “Convex functionals and partial regularity”, Arch. Rational Mech. Anal., 102:3 (1988), 243–272 | DOI | MR | Zbl

[25] Ekeland I., Témam R., Convex analysis and variational problems, Classics Appl. Math., 28, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA, 1999 | MR | Zbl

[26] Attouch H., Buttazzo G., Michaille G., Variational analysis in Sobolev and BV spaces Applications to PDEs and optimization, MPS/SIAM Ser. Optimization, 6, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA; Math. Program. Soc. (MPS), Philadelphia, PA, 2006 | MR | Zbl

[27] Rockafellar R. T., Convex analysis, Princeton Landmarks Math. Phys., Princeton Univ. Press, Princeton, 2015 | MR