Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_4_a5, author = {M. Fuchs and J. M\"uller and C. Tietz}, title = {Signal recovery via {TV-type} energies}, journal = {Algebra i analiz}, pages = {159--195}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_4_a5/} }
M. Fuchs; J. Müller; C. Tietz. Signal recovery via TV-type energies. Algebra i analiz, Tome 29 (2017) no. 4, pp. 159-195. http://geodesic.mathdoc.fr/item/AA_2017_29_4_a5/
[1] Rudin L. I., Osher S., Fatemi E., “Nonlinear total variation based noise removal algorithms”, Phys. D, 60:1–4 (1992), 259–268 | DOI | MR | Zbl
[2] Little M. A., Jones N. S., “Generalized methods and solvers for noise removal from piecewise constant signals. I. Background theory”, Proc. Math. Phys. Eng. Sci., 467:2135 (2011), 3088–3114 | DOI | Zbl
[3] Selesnick I., Parekh A., Bayram I., “Convex 1-D total variation denoising with non-convex regularization”, IEEE Signal Process. Lett., 22:2 (2015), 141–144 | DOI | MR
[4] Torres A., Marquina A., Font J. A., Ibáñez J. M., “Total-variation-based methods for gravitational wave denoising”, Phys. Rev. D, 90:8 (2014), 084029 | DOI
[5] Bildhauer M., Fuchs M., “A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim., 66:3 (2012), 331–361 | DOI | MR | Zbl
[6] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Pt. I: regularity theory”, Probl. mat. anal., 76, 2014, 39–52 | MR | Zbl
[7] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Pt. II: relaxation and dual variational formulation”, Probl. mat. anal., 77, 2015, 3–18 | MR | Zbl
[8] Bildhauer M., Fuchs M., “Image inpainting with energies of linear growth. A collection of proposals”, Probl. mat. anal., 74, 2014, 45–50 | MR | Zbl
[9] Bildhauer M., Fuchs M., “On some perturbations of the total variation image inpainting method. Pt. III: Minimization among sets with finite perimeter”, Probl. mat. anal., 78, 2015, 27–30 | MR | Zbl
[10] Bildhauer M., Fuchs M., Tietz C., “$C^{1,\alpha}$-interior regularity for minimizers of a class of variational problems with linear growth related to image inpainting”, Algebra i analiz, 27:3 (2015), 51–65 | MR
[11] Fuchs M., Tietz C., “Existence of generalized minimizers and of dual solutions for a class of variational problems with linear growth related to image recovery”, Probl. mat. anal., 81, 2015, 107–120 | MR | Zbl
[12] Bredies K., Kunisch K., Valkonen T., “Properties of L1-TGV2: The one-dimensional case”, J. Math. Anal. Appl., 398:1 (2013), 438–454 | DOI | MR | Zbl
[13] Strong D. M., Chan T., “Edge-preserving and scale-dependent properties of total variation regularization”, Inverse Problems, 19:6 (2003), 165–187 | DOI | MR
[14] Papafitsoros K., Bredies K., “A study of the one dimensional total generalised variation regularisation problem”, Inverse Probl. Imaging, 9:2 (2015), 511–550 | DOI | MR | Zbl
[15] Buttazzo G., Giaquinta M., Hildebrandt S., One-dimensional variational problems. An introduction, Oxford Lecture Ser. Math. Appl., 15, Clarendon Press, New York, 1998 | MR | Zbl
[16] Adams R. A., Sobolev spaces, Pure Appl. Math., 65, Acad. Press, New-York–London, 1975 | MR | Zbl
[17] Giusti E., Minimal surfaces and functions of bounded variation, Monogr. Math., 80, Birkhäuser, Basel, 1984 | MR | Zbl
[18] Ambrosio L., Fusco N., Pallara D., Functions of bounded variation and free discontinuity problems, Oxford Math. Monogr., Clarendon Press, Oxford, 2000 | MR | Zbl
[19] Thompson H. B., “Second order ordinary differential equations with fully nonlinear two-point boundary conditions. I”, Pacific J. Math., 172:1 (1996), 255–277 | DOI | MR | Zbl
[20] Thompson H. B., “Second order ordinary differential equations with fully nonlinear two-point boundary conditions. II”, Pacific J. Math., 172:1 (1996), 279–297 | DOI | MR | Zbl
[21] De Coster C., Habets P., Two-point boundary value problems: lower and upper solutions, Math. Sci. Eng., 205, Elsivier, Amsterdam, 2006 | MR | Zbl
[22] Bildhauer M., Fuchs M., “A geometric maximum principle for variational problems in spaces of vector valued functions of bounded variation”, Zap. nauch. semin. POMI, 385, 2010, 5–17 | MR
[23] Hewitt E., Stromberg K., Real and abstract analysis, A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965 | MR | Zbl
[24] Anzellotti G., Giaquinta M., “Convex functionals and partial regularity”, Arch. Rational Mech. Anal., 102:3 (1988), 243–272 | DOI | MR | Zbl
[25] Ekeland I., Témam R., Convex analysis and variational problems, Classics Appl. Math., 28, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA, 1999 | MR | Zbl
[26] Attouch H., Buttazzo G., Michaille G., Variational analysis in Sobolev and BV spaces Applications to PDEs and optimization, MPS/SIAM Ser. Optimization, 6, Soc. Industr. Appl. Math. (SIAM), Philadelphia, PA; Math. Program. Soc. (MPS), Philadelphia, PA, 2006 | MR | Zbl
[27] Rockafellar R. T., Convex analysis, Princeton Landmarks Math. Phys., Princeton Univ. Press, Princeton, 2015 | MR