A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups
Algebra i analiz, Tome 29 (2017) no. 4, pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Given a prime $p$, a permutation group is constructed that contains at least $p^{p-2}$ nonconjugated regular elementary Abelian subgroups of order $p^3$. This gives the first example of a permutation group with exponentially many nonconjugated regular subgroups.
Keywords: permutation group, regular subgroup, polynomial over finite field.
@article{AA_2017_29_4_a1,
     author = {S. Evdokimov and M. Muzychuk and I. Ponomarenko},
     title = {A family of permutation groups with exponentially many nonconjugated regular elementary {Abelian} subgroups},
     journal = {Algebra i analiz},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/}
}
TY  - JOUR
AU  - S. Evdokimov
AU  - M. Muzychuk
AU  - I. Ponomarenko
TI  - A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups
JO  - Algebra i analiz
PY  - 2017
SP  - 45
EP  - 52
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/
LA  - en
ID  - AA_2017_29_4_a1
ER  - 
%0 Journal Article
%A S. Evdokimov
%A M. Muzychuk
%A I. Ponomarenko
%T A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups
%J Algebra i analiz
%D 2017
%P 45-52
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/
%G en
%F AA_2017_29_4_a1
S. Evdokimov; M. Muzychuk; I. Ponomarenko. A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups. Algebra i analiz, Tome 29 (2017) no. 4, pp. 45-52. http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/

[1] Babai L., “Isomorphism problem for a class of point symmetric structures”, Acta Math. Acad. Sci. Hungar., 29:3 (1977), 329–336 | DOI | MR | Zbl

[2] Evdokimov S. A., Ponomarenko I. N., “Raspoznavanie i proverka izomorfizma tsirkulyantnykh grafov za polinomialnoe vremya”, Algebra i analiz, 15:6 (2003), 1–34 | MR | Zbl

[3] Kasami T., Lin S., Peterson W. W., “New generalisations of the Reed–Muller codes. I. Primitive codes”, IEEE Trans. Information Theory, IT-14 (1968), 189–199 | DOI | MR | Zbl

[4] Liebeck M. W., Praeger C., Saxl J., “Regular subgroups of primitive permutation groups”, Mem. Amer. Math. Soc., 203:952 (2010), 1–88 | MR

[5] Muzychuk M., “On the isomorphism problem for cyclic combinatorial objects”, Discrete Math., 197/198 (1999), 589–606 | DOI | MR | Zbl

[6] Wielandt H., Finite permutation groups, Acad. Press, New York–London, 1964 | MR | Zbl

[7] Wielandt H., Permutation groups through invariant relations and invariant functions, Lecture Notes, Dept. Math., Ohio St. Univ., Columbus, 1969