Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_4_a1, author = {S. Evdokimov and M. Muzychuk and I. Ponomarenko}, title = {A family of permutation groups with exponentially many nonconjugated regular elementary {Abelian} subgroups}, journal = {Algebra i analiz}, pages = {45--52}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/} }
TY - JOUR AU - S. Evdokimov AU - M. Muzychuk AU - I. Ponomarenko TI - A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups JO - Algebra i analiz PY - 2017 SP - 45 EP - 52 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/ LA - en ID - AA_2017_29_4_a1 ER -
%0 Journal Article %A S. Evdokimov %A M. Muzychuk %A I. Ponomarenko %T A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups %J Algebra i analiz %D 2017 %P 45-52 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/ %G en %F AA_2017_29_4_a1
S. Evdokimov; M. Muzychuk; I. Ponomarenko. A family of permutation groups with exponentially many nonconjugated regular elementary Abelian subgroups. Algebra i analiz, Tome 29 (2017) no. 4, pp. 45-52. http://geodesic.mathdoc.fr/item/AA_2017_29_4_a1/
[1] Babai L., “Isomorphism problem for a class of point symmetric structures”, Acta Math. Acad. Sci. Hungar., 29:3 (1977), 329–336 | DOI | MR | Zbl
[2] Evdokimov S. A., Ponomarenko I. N., “Raspoznavanie i proverka izomorfizma tsirkulyantnykh grafov za polinomialnoe vremya”, Algebra i analiz, 15:6 (2003), 1–34 | MR | Zbl
[3] Kasami T., Lin S., Peterson W. W., “New generalisations of the Reed–Muller codes. I. Primitive codes”, IEEE Trans. Information Theory, IT-14 (1968), 189–199 | DOI | MR | Zbl
[4] Liebeck M. W., Praeger C., Saxl J., “Regular subgroups of primitive permutation groups”, Mem. Amer. Math. Soc., 203:952 (2010), 1–88 | MR
[5] Muzychuk M., “On the isomorphism problem for cyclic combinatorial objects”, Discrete Math., 197/198 (1999), 589–606 | DOI | MR | Zbl
[6] Wielandt H., Finite permutation groups, Acad. Press, New York–London, 1964 | MR | Zbl
[7] Wielandt H., Permutation groups through invariant relations and invariant functions, Lecture Notes, Dept. Math., Ohio St. Univ., Columbus, 1969