Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_3_a5, author = {L. F. Chac\'on-Cort\'es and W. A. Z\'u\~niga-Galindo}, title = {Heat traces and spectral zeta functions for $p$-adic {Laplacians}}, journal = {Algebra i analiz}, pages = {144--166}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a5/} }
L. F. Chacón-Cortés; W. A. Zúñiga-Galindo. Heat traces and spectral zeta functions for $p$-adic Laplacians. Algebra i analiz, Tome 29 (2017) no. 3, pp. 144-166. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a5/
[1] Albeverio S., Karwowski W., Yasuda K., “Trace formula for $p$-adics”, Acta Appl. Math., 71:1 (2002), 31–48 | DOI | MR | Zbl
[2] Albeverio S., Khrennikov A. Yu., Shelkovich V. M., Theory of $p$-adic distributions: linear and nonlinear models, London Math. Soc. Lecture Note Ser., 370, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[3] Arendt W., Nittka R., Peter W., Steiner F., “Weyl's law: Spectral properties of the laplacian in mathematical physics”, Mathematical Analysis of Evolution, Information, and Complexity, Wiley-VCH, Weinheim, 2009, 1–71 | Zbl
[4] Avetisov V. A., Bikulov A. Kh., Osipov V. A., “$p$-adic description of characteristic relaxation in complex systems”, J. Phys. A, 36:15 (2003), 4239–4246 | DOI | MR | Zbl
[5] Avetisov V. A., Bikulov A. H., Kozyrev S. V., Osipov V. A., “$p$-adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, 35:2 (2002), 177–189 | DOI | MR | Zbl
[6] Burnol J.-F., “Scattering on the $p$-adic field and a trace formula”, Int. Math. Res. Not. IMRN, 2000:2 (2000), 57–70 | DOI | MR | Zbl
[7] Casas-Sánchez O. F., Zúñiga-Galindo W. A., “$p$-adic elliptic quadratic forms, parabolic-type pseudodifferential equations with variable coefficients and Markov processes”, $p$-Adic Numbers Ultrametric Anal. Appl., 6:1 (2014), 1–20 | DOI | MR | Zbl
[8] Cazenave T., Haraux A., An introduction to semilinear evolution equations, Oxford Lecture Ser. Math. Appl., 13, Oxford Univ. Press, New York, 1998 | MR | Zbl
[9] Chacón-Cortés L. F., Zúñiga-Galindo W. A., “Nonlocal operators, parabolic-type equations, and ultrametric random walks”, J. Math. Phys., 54:11 (2013), 113503 ; “Erratum”, J. Math. Phys., 55:10 (2014), 109901 | DOI | MR | Zbl | DOI | MR | Zbl
[10] Chacón-Cortés L. F., Zúñiga-Galindo W. A., “Non-local operators, non-Archimedean parabolic-type equations with variable coefficients and Markov processes”, Publ. Res. Inst. Math. Sci., 51:2 (2015), 289–317 | DOI | MR | Zbl
[11] Chambert-Loir A., Tschinkel Yu., “Igusa integrals and volume asymptotics in analytic and adelic geometry”, Confluentes Math., 2:3 (2010), 351–429 | DOI | MR | Zbl
[12] Connes A., “Trace formula in non-commutative geometry and the zeros of the Riemann zeta function”, Selecta Math. (N.S.), 5 (1999), 29–106 | DOI | MR | Zbl
[13] Deninger Ch., “On the nature of the “explicit formulas” in analytic number theory – a simple example”, Number Theoretic Methods (Iizuka, 2001), Dev. Math., 8, Kluwer Acad. Publ., Dordrecht, 2002, 97–118 | MR | Zbl
[14] Dodziuk J., “Eigenvalues of the Laplacian and the heat equation”, Amer. Math. Monthly, 88:9 (1981), 686–695 | DOI | MR | Zbl
[15] Dragovich B., Khrennikov A. Yu., Kozyrev S. V., Volovich I. V., “On $p$-adic mathematical physics”, $p$-Adic Numbers Ultrametric Anal. Appl., 1:1 (2009), 1–17 | DOI | MR | Zbl
[16] Gilkey P. B., Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Stud. Adv. Math., Second ed., CRC Press, Boca Raton, FL, 1995 | MR | Zbl
[17] Haran Sh., “Quantizations and symbolic calculus over the $p$-adic numbers”, Ann. Inst. Fourier (Grenoble), 43:4 (1993), 997–1053 | DOI | MR | Zbl
[18] Igusa J.-I., An introduction to the theory of local zeta functions, AMS/IP Stud. Adv. Math., 14, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[19] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, Monogr. and Textbook Pure Appl. Math., 244, Marcel Dekker, Inc., New York, 2001 | MR | Zbl
[20] Kozyrev S. V., “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. mat., 66:2 (2002), 149–158 | DOI | MR | Zbl
[21] Kozyrev S. V., Khrennikov A. Yu., “Psevdodifferentsialnye operatory na ultrametricheskikh prostranstvakh i ultrametricheskie vspleski”, Izv. RAN. Ser. mat., 69:5 (2005), 133–148 | DOI | MR | Zbl
[22] Lal N., Lapidus M. L., “Hyperfunctions and spectral zeta functions of Laplacians on self-similar fractals”, J. Phys. A, 45:36 (2012), 365205 | DOI | MR | Zbl
[23] Leichtnam E., “Scaling group flow and Lefschetz trace formula for laminated spaces with $p$-adic transversal”, Bull. Sci. Math., 131:7 (2007), 638–669 | DOI | MR | Zbl
[24] Leichtnam E., “On the analogy between arithmetic geometry and foliated spaces”, Rend. Mat. Appl. (7), 28:2 (2008), 163–188 | MR | Zbl
[25] Minakshisundaram S., “A generalization of Epstein zeta functions”, Canad. J. Math., 1 (1949), 320–327 | DOI | MR
[26] Minakshisundaram S., “Eigenfunctions on Riemannian manifolds”, J. Indian Math. Soc. (N.S.), 17 (1953), 159–165 | MR
[27] Minakshisundaram S., Pleijel E., “Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds”, Canad. J. Math., 1 (1949), 242–256 | DOI | MR | Zbl
[28] Reed M., Simon B., Methods of modern mathematical physics, v. I, Functional analysis, Acad. Press, New York–London, 1972 | MR | Zbl
[29] Riesz F., Sz.-Nagy B., Functional analysis, Dover Books Adv. Math., Dover Publ., Inc., New York, 1990 | MR | Zbl
[30] Rodríguez-Vega J. J., Zúñiga-Galindo W. A., “Taibleson operators, $p$-adic parabolic equations and ultrametric diffusion”, Pacific J. Math., 237:2 (2008), 327–347 | DOI | MR | Zbl
[31] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Izd-vo MGU, M., 1978 | MR
[32] Steinhurst B. A., Teplyaev A., “Existence of a meromorphic extension of spectral zeta functions on fractals”, Lett. Math. Phys., 103:12 (2013), 1377–1388 | DOI | MR | Zbl
[33] Taibleson M. H., Fourier analysis on local fields, Princeton Univ. Press, Princeton, 1975 | MR | Zbl
[34] Torba S. M., Zúñiga-Galindo W. A., “Parabolic type equations and Markov stochastic processes on adeles”, J. Fourier Anal. Appl., 19:4 (2013), 792–835 | DOI | MR | Zbl
[35] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | Zbl
[36] Voros A., “Spectral zeta functions”, Zeta Functions in Geometry (Tokyo, 1990), Adv. Stud. Pure Math., 21, Kinokuniya, Tokyo, 1992, 327–358 | MR | Zbl
[37] Yasuda K., “Trace formula on the $p$-adic upper half-plane”, J. Funct. Anal., 216:2 (2004), 422–454 | DOI | MR | Zbl
[38] Zúñiga-Galindo W. A., “The non-Archimedean stochastic heat equation driven by Gaussian noise”, J. Fourier Anal. Appl., 21:3 (2015), 600–627 | DOI | MR | Zbl
[39] Zúñiga-Galindo W. A., “Parabolic equations and Markov processes over $p$-adic fields”, Potential Anal., 28:2 (2008), 185–200 | DOI | MR | Zbl