Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_3_a4, author = {J. Portegies and C. Sormani}, title = {Properties of the intrinsic flat distance}, journal = {Algebra i analiz}, pages = {70--143}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a4/} }
J. Portegies; C. Sormani. Properties of the intrinsic flat distance. Algebra i analiz, Tome 29 (2017) no. 3, pp. 70-143. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a4/
[1] Ambrosio L., Kirchheim B., “Currents in metric spaces”, Acta Math., 185:1 (2000), 1–80 | DOI | MR | Zbl
[2] Burago D., Ivanov S., “On asymptotic volume of tori”, Geom. Funct. Anal., 5:5 (1995), 800–808 | DOI | MR | Zbl
[3] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. in Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl
[4] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46:3 (1997), 406–480 | DOI | MR | Zbl
[5] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. III”, J. Differential Geom., 54:1 (2000), 37–74 | DOI | MR | Zbl
[6] Colding T. H., “Ricci curvature and volume convergence”, Ann. of Math. (2), 145:3 (1997), 477–501 | DOI | MR | Zbl
[7] Federer H., Fleming W. H., “Normal and integral currents”, Ann. of Math. (2), 72 (1960), 458–520 | DOI | MR | Zbl
[8] Greene R. E., Petersen P. V., “Little topology, big volume”, Duke Math. J., 67:2 (1992), 273–290 | DOI | MR | Zbl
[9] Gromov M., “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR
[10] Gromov M., Structures métriques pour les variétés riemanniennes, Textes Math., 1, CEDIC, Paris, 1981 | MR
[11] Gromov M., “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | DOI | MR | Zbl
[12] Gromov M., “Plateau–Stein manifolds”, Cent. Eur. J. Math., 12:7 (2014), 923–951 | MR | Zbl
[13] Huang L.-H., Lee D., Sormani C., “Stability of the positive mass theorem for graphical hypersurfaces of euclidean space”, J. Riene Angew. Math., 727 (2017), 269–299 | MR | Zbl
[14] Jauregui J., On the lower semicontinuity of the ADM mass, 2016, arXiv: 1411.3699[math.DG]
[15] Lakzian S., “Intrinsic flat continuity of Ricci flow through neckpinch singularities”, Geom. Dedicata, 179 (2015), 69–89 | DOI | MR | Zbl
[16] Lakzian S., “On diameter controls and smooth convergence away from singularities”, Differential Geom. Appl., 47 (2016), 99–129 | DOI | MR | Zbl
[17] Lakzian S., Sormani C., “Smooth convergence away from singular sets”, Comm. Anal. Geom., 21:1 (2013), 39–104 | DOI | MR | Zbl
[18] Lee D. A., Sormani C., “Near-equality of the Penrose inequality for rotationally symmetric Riemannian manifolds”, Ann. Henri Poincaré, 13:7 (2012), 1537–1556 | DOI | MR | Zbl
[19] Lee D. A., Sormani C., “Stability of the positive mass theorem for rotationally symmetric riemannian manifolds”, J. Riene Angew. Math., 686 (2014), 187–220 | MR | Zbl
[20] LeFloch Ph. G., Sormani C., “The nonlinear stability of rotationally symmetric spaces with low regularity”, J. Funct. Anal., 268:7 (2015), 2005–2065 | DOI | MR | Zbl
[21] Li N., Perales R., On the Sormani–Wenger intrinsic flat convergence of Alexandrov spaces, 2015, arXiv: 1411.6854[math.MG]
[22] Lin F., Yang X., Geometric measure theory – an introduction, Adv. Math. (Beijing/Boston), 1, Sci. Press, Beijing, 2002 | MR | Zbl
[23] Matveev R., Portegies J., Intrinsic flat and Gromov–Hausdorff convergence of manifolds with Ricci curvature bounded below, 2015, arXiv: 1510.07547[math.DG] | MR
[24] Morgan F., Geometric measure theory, A beginner's guide, Elsevier/Academic Press, Amsterdam, 2009 | MR | Zbl
[25] Munn M., Intrinsic flat convergence with bounded ricci curvature, 2014, arXiv: 1405.3313[math.MG]
[26] Perales R., Convergence of manifolds and metric spaces with boundary, 2015, arXiv: 1505.01792[math.MG] | MR
[27] Perales R., Volumes and limits of manifolds with Ricci curvature and mean curvature bounds, 2015, arXiv: 1404.0560[math.MG] | MR
[28] Portegies J. W., “Semicontinuity of eigenvalues under intrinsic flat convergence”, Calc. Var. Partial Differential Equations, 54:2 (2015), 1725–1766 | DOI | MR | Zbl
[29] Royden H. L., Real analysis, Macmillan Publ. Co., New York, 1988 | MR | Zbl
[30] Sormani C., “The tetrahedral property and a new Gromov–Hausdorff compactness theorem”, C. R. Math. Acad. Sci. Paris, 351:3–4 (2013), 119–122 | DOI | MR | Zbl
[31] Sormani C., Intrinsic flat Arzela–Ascoli theorems, 2014, arXiv: 1402.6066[math.MG]
[32] Sormani C., Scalar curvature and intrinsic flat convergence, 2016, arXiv: 1606.08949[math.MG]
[33] Sormani C., Wenger S., “Weak convergence and cancellation”, Cal. Var. Partial Differential Equations, 38:1–2 (2010), 183–206 | DOI | MR | Zbl
[34] Sormani C., Wenger S., “The intrinsic flat distance of between Riemannian manifolds and other integral current spaces”, J. Differential Geom., 87:1 (2011), 117–199 | DOI | MR | Zbl
[35] Wenger S., “Flat convergence for integral currents in metric spaces”, Calc. Var. Partial Differential Equations, 28:2 (2007), 139–160 | DOI | MR | Zbl
[36] Wenger S., “Compactness for manifolds and integral currents with bounded diameter and volume”, Cal. Var. Partial Differential Equations, 40:3–4 (2011), 423–448 | DOI | MR | Zbl
[37] Whitney H., Geometric integration theory, Princeton Univ. Press, Princeton, N.J., 1957 | MR | Zbl