Properties of the intrinsic flat distance
Algebra i analiz, Tome 29 (2017) no. 3, pp. 70-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper written in honor of Yuri Burago, we explore a variety of properties of intrinsic flat convergence. We introduce the sliced filling volume and interval sliced filling volume and explore the relationship between these notions, the tetrahedral property and the disappearance of points under intrinsic flat convergence. We prove two new Gromov–Hausdorff and intrinsic flat compactness theorems including the Tetrahedral Compactness Theorem. Much of the work in this paper builds upon Ambrosio–Kirchheim's Slicing Theorem combined with an adapted version Gromov's Filling Volume. We are grateful to have been invited to submit a paper in honor of Yuri Burago, in thanks not only for his beautiful book written jointly with Dimitri Burago and Sergei Ivanov but also for his many thoughtful communications with us and other young mathematicians over the years.
Keywords: intrinsic flat convergence, geometric measure theory, Riemannian geometry.
@article{AA_2017_29_3_a4,
     author = {J. Portegies and C. Sormani},
     title = {Properties of the intrinsic flat distance},
     journal = {Algebra i analiz},
     pages = {70--143},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a4/}
}
TY  - JOUR
AU  - J. Portegies
AU  - C. Sormani
TI  - Properties of the intrinsic flat distance
JO  - Algebra i analiz
PY  - 2017
SP  - 70
EP  - 143
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_3_a4/
LA  - en
ID  - AA_2017_29_3_a4
ER  - 
%0 Journal Article
%A J. Portegies
%A C. Sormani
%T Properties of the intrinsic flat distance
%J Algebra i analiz
%D 2017
%P 70-143
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_3_a4/
%G en
%F AA_2017_29_3_a4
J. Portegies; C. Sormani. Properties of the intrinsic flat distance. Algebra i analiz, Tome 29 (2017) no. 3, pp. 70-143. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a4/

[1] Ambrosio L., Kirchheim B., “Currents in metric spaces”, Acta Math., 185:1 (2000), 1–80 | DOI | MR | Zbl

[2] Burago D., Ivanov S., “On asymptotic volume of tori”, Geom. Funct. Anal., 5:5 (1995), 800–808 | DOI | MR | Zbl

[3] Burago D., Burago Yu., Ivanov S., A course in metric geometry, Grad. Stud. in Math., 33, Amer. Math. Soc., Providence, RI, 2001 | DOI | MR | Zbl

[4] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. I”, J. Differential Geom., 46:3 (1997), 406–480 | DOI | MR | Zbl

[5] Cheeger J., Colding T. H., “On the structure of spaces with Ricci curvature bounded below. III”, J. Differential Geom., 54:1 (2000), 37–74 | DOI | MR | Zbl

[6] Colding T. H., “Ricci curvature and volume convergence”, Ann. of Math. (2), 145:3 (1997), 477–501 | DOI | MR | Zbl

[7] Federer H., Fleming W. H., “Normal and integral currents”, Ann. of Math. (2), 72 (1960), 458–520 | DOI | MR | Zbl

[8] Greene R. E., Petersen P. V., “Little topology, big volume”, Duke Math. J., 67:2 (1992), 273–290 | DOI | MR | Zbl

[9] Gromov M., “Hyperbolic groups”, Essays in Group Theory, Math. Sci. Res. Inst. Publ., 8, Springer, New York, 1987, 75–263 | DOI | MR

[10] Gromov M., Structures métriques pour les variétés riemanniennes, Textes Math., 1, CEDIC, Paris, 1981 | MR

[11] Gromov M., “Filling Riemannian manifolds”, J. Differential Geom., 18:1 (1983), 1–147 | DOI | MR | Zbl

[12] Gromov M., “Plateau–Stein manifolds”, Cent. Eur. J. Math., 12:7 (2014), 923–951 | MR | Zbl

[13] Huang L.-H., Lee D., Sormani C., “Stability of the positive mass theorem for graphical hypersurfaces of euclidean space”, J. Riene Angew. Math., 727 (2017), 269–299 | MR | Zbl

[14] Jauregui J., On the lower semicontinuity of the ADM mass, 2016, arXiv: 1411.3699[math.DG]

[15] Lakzian S., “Intrinsic flat continuity of Ricci flow through neckpinch singularities”, Geom. Dedicata, 179 (2015), 69–89 | DOI | MR | Zbl

[16] Lakzian S., “On diameter controls and smooth convergence away from singularities”, Differential Geom. Appl., 47 (2016), 99–129 | DOI | MR | Zbl

[17] Lakzian S., Sormani C., “Smooth convergence away from singular sets”, Comm. Anal. Geom., 21:1 (2013), 39–104 | DOI | MR | Zbl

[18] Lee D. A., Sormani C., “Near-equality of the Penrose inequality for rotationally symmetric Riemannian manifolds”, Ann. Henri Poincaré, 13:7 (2012), 1537–1556 | DOI | MR | Zbl

[19] Lee D. A., Sormani C., “Stability of the positive mass theorem for rotationally symmetric riemannian manifolds”, J. Riene Angew. Math., 686 (2014), 187–220 | MR | Zbl

[20] LeFloch Ph. G., Sormani C., “The nonlinear stability of rotationally symmetric spaces with low regularity”, J. Funct. Anal., 268:7 (2015), 2005–2065 | DOI | MR | Zbl

[21] Li N., Perales R., On the Sormani–Wenger intrinsic flat convergence of Alexandrov spaces, 2015, arXiv: 1411.6854[math.MG]

[22] Lin F., Yang X., Geometric measure theory – an introduction, Adv. Math. (Beijing/Boston), 1, Sci. Press, Beijing, 2002 | MR | Zbl

[23] Matveev R., Portegies J., Intrinsic flat and Gromov–Hausdorff convergence of manifolds with Ricci curvature bounded below, 2015, arXiv: 1510.07547[math.DG] | MR

[24] Morgan F., Geometric measure theory, A beginner's guide, Elsevier/Academic Press, Amsterdam, 2009 | MR | Zbl

[25] Munn M., Intrinsic flat convergence with bounded ricci curvature, 2014, arXiv: 1405.3313[math.MG]

[26] Perales R., Convergence of manifolds and metric spaces with boundary, 2015, arXiv: 1505.01792[math.MG] | MR

[27] Perales R., Volumes and limits of manifolds with Ricci curvature and mean curvature bounds, 2015, arXiv: 1404.0560[math.MG] | MR

[28] Portegies J. W., “Semicontinuity of eigenvalues under intrinsic flat convergence”, Calc. Var. Partial Differential Equations, 54:2 (2015), 1725–1766 | DOI | MR | Zbl

[29] Royden H. L., Real analysis, Macmillan Publ. Co., New York, 1988 | MR | Zbl

[30] Sormani C., “The tetrahedral property and a new Gromov–Hausdorff compactness theorem”, C. R. Math. Acad. Sci. Paris, 351:3–4 (2013), 119–122 | DOI | MR | Zbl

[31] Sormani C., Intrinsic flat Arzela–Ascoli theorems, 2014, arXiv: 1402.6066[math.MG]

[32] Sormani C., Scalar curvature and intrinsic flat convergence, 2016, arXiv: 1606.08949[math.MG]

[33] Sormani C., Wenger S., “Weak convergence and cancellation”, Cal. Var. Partial Differential Equations, 38:1–2 (2010), 183–206 | DOI | MR | Zbl

[34] Sormani C., Wenger S., “The intrinsic flat distance of between Riemannian manifolds and other integral current spaces”, J. Differential Geom., 87:1 (2011), 117–199 | DOI | MR | Zbl

[35] Wenger S., “Flat convergence for integral currents in metric spaces”, Calc. Var. Partial Differential Equations, 28:2 (2007), 139–160 | DOI | MR | Zbl

[36] Wenger S., “Compactness for manifolds and integral currents with bounded diameter and volume”, Cal. Var. Partial Differential Equations, 40:3–4 (2011), 423–448 | DOI | MR | Zbl

[37] Whitney H., Geometric integration theory, Princeton Univ. Press, Princeton, N.J., 1957 | MR | Zbl